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Supervisor’s Foreword

Baryon asymmetry is one mystery in our Universe. The Standard Model describes
most of the particle phenomena very well; however, it cannot explain the asymmetry.
So far, various solutions have been invented. Among them is electroweak baryo-
genesis, in which the asymmetry is produced during electroweak phase transition.
Its typical energy scale is O(100) GeV; therefore, the scenario has high testability
at particle physics experiments. The discovered Higgs boson with 125 GeV mass
indicated that the Standard Model is not able to cause the first-order phase transition
necessary for the successful scenario. Moreover, it turned out that CP violation in the
Standard Model does not work enough for creating the present asymmetry. These
two aspects motivate us to study the next candidate, namely, physics beyond the
Standard Model.

In this thesis, Kaori Fuyuto has investigated electroweak baryogenesis in an
extended Standard Model. The model newly introduces an extra Higgs doublet
scalar, a singlet scalar, and electroweak-interacting fermions. This setup applies
to several extensions of the minimal supersymmetric Standard Model. The first-
order phase transition is induced by the singlet scalar, and its analysis is done
including estimations of sphaleron energy. Interactions between the Higgs doublet
and new fermions bring a significant CP-violating process for the asymmetry. The
final baryon asymmetry is estimated by the closed time path formalism, which can
deal with quantum non-equilibrium phenomenon under the CP violation. These
comprehensive analyses have clarified successful parameter regions in explaining
the asymmetry. This thesis has also discussed the testability by two measurements:
the Higgs coupling and electric dipole moments of electron, neutron, and proton.
Taking into account their current and future prospective sensitivities, it has been
discussed how the measurements play a complementary role in the verifications.

Nagoya, Japan Prof. Junji Hisano
August 2018
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Chapter 1
Introduction

Abstract Particle physics is based on quantum field theory. It predicts that all
particles have a partner with the same mass but opposite charge, which is called
antiparticles. The presence was first confirmed by Carl Anderson in 1932, since
then, the antiparticles have been established in various experiments. Today, they can
be produced in a laboratory and used for a further quest of the Universe.

It would be natural to imagine that both the particle and antiparticle equally exist
in the Universe. However, looking around our Universe, everything is made of the
particle. Although the antiparticles like μ+ can be observed in the atmosphere they
are just secondary particles produced in association with collisions of cosmic rays.
No one knows why only the particle is left in the current Universe, which is one of
the mysteries our Universe holds. In this chapter, we give a brief introduction to it
and explain necessary conditions for creating the asymmetry.

Keywords Baryon asymmetry of the Universe · Sakharov’s criteria

1.1 Baryon Asymmetry of the Universe

When the Universe is at high temperature, both pair production and annihilation
of a particle and antiparticle frequently take place. Typical energy of an involved
photon is given by the temperature; therefore it comes to lower with decrease of
the temperature. Once the photons do not possess enough energy to cause the
pair production, only the pair annihilation proceeds. Simultaneously, the rate of
the annihilation grows smaller with the expansion of the Universe, and finally, the
process freezes.

In this case, however, it is known that the final asymmetry is too small to
explain the present Universe that predominantly holds the particle. Therefore, in
order to create the current Universe, difference between the number of particle
and antiparticle must exist by the era that the pair annihilation ends. The baryon
asymmetry of the Universe (BAU) is one of outstanding problems in the particle
physics, and its value is indicated by Planck satellite [1]

© Springer Nature Singapore Pte Ltd. 2018
K. Fuyuto, Electroweak Baryogenesis and Its Phenomenology, Springer Theses,
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10 10 + 1 10 10

b b

b
-

Fig. 1.1 Current cosmological observations show that the number density of baryons (b) is
different from that of anti-baryons (b̄) by very small amount: 1010 + 1 baryons and 1010 anti-
baryons

nB

s
= (8.59 ± 0.11) × 10−11, (1.1)

where nB ≡ nb−nb̄ with the baryon (anti-baryon) number density nb(b̄) and entropy
density s. Unless the baryon number and/or entropy are newly produced, the ratio is
invariant under the adiabatic expansion of the Universe. The ratio implies that just
a little difference between the baryon and anti-baryon is needed for explanation of
the present Universe, whose difference is roughly one to a billion as in Fig. 1.1. It
is a surprising fact that the tiny little difference built the Universe; in addition, the
situation cannot be explained by the Standard Model (SM). It is called baryogenesis
to study how the asymmetry is produced in terms of particle physics.

Before we move onto detailed discussion, let us give a brief comment on two
simple but failed stories for the explanation of the BAU. One is to consider that the
baryon asymmetry is just an initial condition, namely, the BAU has been present
since the birth of the Universe. In this case, unfortunately, exponential expansion
of the Universe known as inflation, which is the natural solution of the flatness and
horizon problems, would lead to the disappearance of the asymmetry. To be more
precise, since the total entropy of the Universe can be produced during the re-heating
era after inflation, the initial asymmetry eventually vanishes. Another idea is that the
matter exists only around us, but faraway galaxies are being made of antimatter. It
implies that the matter and antimatter are separated in the Universe. As discussed
in Ref. [2], if galaxies and anti-galaxies come close and collide, the strong gamma
rays can be emitted. However, such strong gamma rays have not been seen, so far.
As discussed in [3, 4], let us consider the situation where the matter and antimatter
are successfully separated before 38 MeV at which nb/s = nb̄/s = 8 × 10−10. In
such a circumstance, the total energy in the horizon amounts to 10−7 M� where
M� is solar mass. Then, it turned out that this value cannot explain the present total
quantity of matter inside the Milky Way galaxy (∼1012 M�).

As mentioned earlier, explanation of the BAU needs some extensions of the SM.
So far, various stories for baryogenesis have been invented [5]:

1. GUT baryogenesis. 2. GUT baryogenesis after preheating. 3. Baryogenesis from
primordial black holes. 4. String scale baryogenesis. 5. Affleck-Dine (AD) baryogenesis.
6. Hybridized AD baryogenesis. 7. No-scale AD baryogenesis. 8. Single field baryo-
genesis. 9. Electroweak (EW) baryogenesis. 10. Local EW baryogenesis. 11. Non-local
EW baryogenesis. 12. EW baryogenesis at preheating. 13. SUSY EW baryogenesis.
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14. String mediated EW baryogenesis. 15. Baryogenesis via leptogenesis. 16. Inflationary
baryogenesis. 17. Resonant leptogenesis. 18. Spontaneous baryogenesis. 19. Coherent
baryogenesis. 20. Gravitational baryogenesis. 21. Defect mediated baryogenesis. 22.
Baryogenesis from long cosmic strings. 23. Baryogenesis from short cosmic strings.
24. Baryogenesis from collapsing loops. 25. Baryogenesis through collapse of vortons.
26. Baryogenesis through axion domain walls. 27. Baryogenesis through QCD domain
walls. 28. Baryogenesis through unstable domain walls. 29. Baryogenesis from classical
force. 30. Baryogenesis from electrogenesis. 31. B-ball baryogenesis. 32. Baryogenesis
from CPT breaking. 33. Baryogenesis through quantum gravity. 34. Baryogenesis via
neutrino oscillations. 35. Monopole baryogenesis. 36. Axino induced baryogenesis. 37.
Gravitino induced baryogenesis. 38. Radion induced baryogenesis. 39. Baryogenesis
in large extra dimensions. 40. Baryogenesis by brane collision. 41. Baryogenesis via
density fluctuations. 42. Baryogenesis from hadronic jets. 43. Thermal leptogenesis.
44. Nonthermal leptogenesis.

Here, it should be mentioned that these mechanisms must satisfy three conditions
called the Sakharov criteria. Let us see the conditions in next section.

1.2 Sakharov’s Criteria

The Sakharov criteria are composed of the following three conditions [6]:

1. Baryon number violating process.
2. C and CP violations.
3. Out of equilibrium.

Here, C and P imply charge and parity symmetries.
As expected easily, the first condition is obviously necessary to create baryon

number. One example for the condition is shown in Fig. 1.2, which describes that
a particle X decays into particles of Y and b. Here, while the particles of X and Y

do not possess the baryon number, namely, B = 0, the particle b has the baryon
number B = 1. Thus, it can be understood that the variation of the baryon numbers
is �B = 1 in the process. What is important is that there is no baryon number
violating process in the SM, and the process has not been seen in any experiments,

Fig. 1.2 An example of
process which violates baryon
numbers. Since particle X

and Y do not possess baryon
numbers, the variation of the
baryon number amounts to
�B = 1

X

Y

b

B = 0 B = 1
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X

Y Y
-

X
-

b
-b

Γ(X → Y + b) Γ(X̄ → Ȳ + b̄)

Fig. 1.3 Decay process of particle X and antiparticle X̄. If �(X → Y + b) = �(X̄ → Ȳ + b̄), the
net baryon number equals zero

so far. In other words, the process is necessary for the BAU, but it must also evade
the experimental constraint such as proton decay. As discussed later, one interesting
process is that caused by the sphaleron [7, 8], which violates the B + L number
through anomaly. The sphaleron process frequently occurs at high temperature,
but it is suppressed at zero temperature. So, we do not need to worry about the
experimental limit on it.

The second condition naively implies that a difference of transition probability
between �(X → Y + b) and �(X̄ → Ȳ + b̄) is needed, where the character with a
bar is denoted as an antiparticle. In Fig. 1.3, while the left process creates �B = 1,
the right process results in �B = −1. If �(X → Y +b) = �(X̄ → Ȳ + b̄), the total
BAU eventually vanishes. Thus, the difference of the transition probability between
baryon and anti-baryon is also needed to leave the baryon asymmetry. Actually, the
condition requires us to violate symmetry in which the baryon number is changed
into odd number. Let us look into more details.

Once we define the baryon number B as follows

B =
∑

q

i

∫
d3x

1

3
q̄γ 0q, (1.2)

with a quark field q, one can check that the sign changes under C and CP
transformations. We also introduce density operator ρ(t) to describe the state of
the Universe

ρ(t) =
∑

n

pn|ψn(t)〉〈ψn(t)|, (1.3)

where {|ψn(t)〉} is a complete set of states in the Schrödinger picture and pn

corresponds to a probability that a state of |ψ(t)〉 can be found. The evolution of
the density operator is given by solving the Liouville equation

ih̄
∂ρ(t)

∂t
+ [ρ(t),H ] = 0, (1.4)
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with the Hamiltonian H . Defining Lρ(t) = [H, ρ(t)], we can obtain the formal

solution for the density operator as ρ(t) = ρ0e
− i

h̄
Lt .1 On the other hand, in thermal

equilibrium, the solution is given by ρeq ≡ exp(−βH) with β = 1/T .
With the density operator, an expectation value of an operator O can be derived as

〈O〉(t) = Tr[ρ(t)O]. (1.5)

Here, let us assume that the Universe is initially baryon-symmetric, which implies
that 〈B〉(t = 0) ≡ Tr[ρ0B] = 0. If the Hamiltonian is invariant under C and CP
transformations, namely,

[H,C] = [H,CP ] = 0, (1.6)

we obtain that

[ρ(t), C] = [ρ(t), CP ] = 0, (1.7)

and these relations lead to

〈B〉(t) = Tr[ρ(t)B] = −Tr[ρ(t)CBC−1] = −Tr[ρ(t)B] = 0, (1.8)

〈B〉(t) = Tr[ρ(t)B] = −Tr[ρ(t)(CP )B(CP )−1] = −Tr[ρ(t)B] = 0. (1.9)

Thus, it can be understood that the final baryon number disappear if both C and CP
symmetries are kept. These discussions also imply that any symmetry under which
the baryon number changes the sign must be broken to leave the nonzero value.2

Finally, the third condition represents that the transition probability of the baryon
number violating process should be different from that of the reversal process. If
�(X → Y + b) = �(Y + b → X), the net baryon number finally becomes zero as
illustrated in Fig. 1.4. Hence, the non-equilibrium is needed.

Each scenario introduced in the previous section does satisfy Sakharov’s criteria,
and among them is electroweak baryogenesis (EWBG) [9]. In the mechanism, the
BAU can be produced during the electroweak phase transition (EWPT). Therefore
the relevant energy scale would be within our experimental reach, i.e., O(100) GeV,
which leads to the high testability by collider experiment. Actually, as discussed
later, the possibility of the Standard Model EWBG has been completely excluded
by the discovery of the Higgs boson. Moreover, not only the collider experiment but
precision measurement of electric dipole moments (EDMs) can probe it. Actually,

1In the Heisenberg picture, it can be written that 〈O〉(t) = Tr[ρ0O(t)] with ρ0 = ρ(t = 0).
2Respecting the CPT theorem, one would obtain [CPT, ρeq] = 0 that results from [CPT,H ] = 0.
Since time-reversal transformation does not change the sign of the baryon number, it leads to
(CPT )B(CPT )−1 = −B. Thus, it is concluded that the baryon number cannot be produced. This
situation represents that the expression of ρ(t) in thermal equilibrium is not valid.
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X

Y

b

Y

b

X

Γ(X → Y + b) Γ(Y + b → X )

Fig. 1.4 The baryon number violating process of X → Y +b and the reversal process of Y +b →
X. If �(X → Y + b) = �(Y + b → X), the baryon number vanishes even if it is produced once

it seems that the mechanism is more complicated than other scenarios, but the
examination would be an urgent issue since the collider experiment is running now.
For reviews on EWBG, see [3, 10–18].

1.3 Outline of This Thesis

In this thesis, we firstly review EWBG and give a comment on the current situation.
The discussion about a model we focus on starts in Chap. 3, and we explain a
calculation of the baryon number based on the closed time path formalism in
Chap. 4. Subsequently, a relationship between the CP-violating source and EDMs
in the model is discussed. Then, we show our numerical results and describe the
verifiability. Finally, Chap. 7 is devoted to conclusions.
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Chapter 2
Electroweak Baryogenesis

Abstract The Higgs boson would be the key particle to EWPT, so the establish-
ment of the Higgs sector plays an essential role in EWBG. In fact, the discovery of
the Higgs boson has narrowed down the possibilities of EWBG in various models.
The high testability is one reason why EWBG is attractive. Given that the Large
Hadron Collider (LHC) is running now, we expect that the LHC can examine more
feasible parameter region. This chapter describes how electroweak baryogenesis
satisfies the Sakharov criteria and creates the baryon asymmetry. Subsequently, a
current status of the scenario is mentioned.

Keywords Electroweak phase transition · Sphaleron process · New physics

2.1 Electroweak Baryogenesis

In EWBG, the Sakharov criteria are satisfied by the following processes:

1. Baryon number violating process: sphaleron process
2. C and CP violations: chiral gauge theory and CP phase
3. Out of equilibrium: first-order electroweak phase transition

The first condition is automatically satisfied by the sphaleron process without
dependence on a model, but it relies on the model whether the second and third
conditions are satisfied.

2.1.1 Sphaleron Process

2.1.1.1 The (B + L)-Violating Process

The sphaleron process is basically the (B+L) violating process at the quantum level,
and the quantum process is catalyzed by the transition between degenerate vacua.
While the process frequently occurs at high temperature, it is drastically suppressed
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10 2 Electroweak Baryogenesis

near zero temperature. Therefore, we do not need to worry about experimental limits
such as proton decay. The subsequent discussion about the sphaleron process is
based on Ref. [1].

If we consider the Lagrangian that is invariant under SU(3)C ×SU(2)L×U(1)Y ,
global U(1) symmetries accidentally show up. The accidental symmetries lead to
the conservations of baryon number B and lepton number L in the SM. However, in
1976, ’t Hooft found that there is a non-perturbative effect that violates the (B + L)

number [2]. This effect is called instanton, and its transition rate is extremely small,
e−4π/α2 ∼ 10−150, where α2 = g2

2/(4π) and g2 is the SU(2)L gauge coupling.
Subsequently, in 1984, Klinkhamer and Manton realized that, although instanton is
the process at zero temperature, such an effect is enhanced at high temperature [3].

Let us see the following phase transformation with respect to the Dirac field ψ(x)

ψ(x) → ψ ′(x) = ei(a+bγ5)θ(x)ψ(x). (2.1)

Here, while a = 1/3 and b = 0 correspond to the baryon number transformation
for quark field, a = 1 and b = 0 are equivalent to the lepton number transformation
for lepton field. Under this transformation, two variations appear in the generating
function of Z(η, η̄, J ) = ∫

DψDψ̄ exp[S0(ψ, ψ̄, Aa)] where Aa is gauge field.
One is in the action

S0 → S0 + δS0, (2.2)

with

δS0 = −
∫

d4x
[
ψ̄(x)m

(
e2ibγ5θ(x) − 1

)
ψ(x) + ψ̄(x)γ μ(a + bγ5)ψ(x)∂μθ(x)

]
.

(2.3)

The other is in the measure

DψDψ̄ → DψDψ̄ S1, (2.4)

with

S1 = exp

[
i

∫
d4x θ(x)

{
(a − b)

8π2 Tr
[
F (L)μνF̃ (L)

μν

]
− (a + b)

8π2 Tr
[
F (R)μνF̃ (R)

μν

]}]
,

(2.5)

where F̃μν ≡ εμνρσ F ρσ /2. Here, FL,R
μν are the field strengths of gauge field, which

couple to the left-handed current, jL = ψ̄LγμψL, and the right-handed current,
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Fig. 2.1 Quantum effect that
violates the (B + L) number

J
μ
B

Aa
α

Ab
β

jR = ψ̄RγμψR , respectively.1 A requirement that the generating function does not
change under the transformation yields

∂μ
{
ψ̄(x)γμ(a + bγ5)ψ(x)

}

= −2ibmψ̄(x)γ5ψ(x) − i
(a − b)

8π2
Tr

[
F (L)μνF̃ (L)

μν

]
+ i

(a + b)

8π2
Tr

[
F (R)μνF̃ (R)

μν

]
.

(2.6)

The first term on the right-hand side is originated from the variation at the classical
level, and it becomes zero as long as b = 0. However, the second and third terms
do not vanish even if b = 0, which results from the quantum effect in Fig. 2.1.
The situation indicates that, although the baryon and lepton number violation are
prohibited at the classical level, they occur at the quantum level. Performing trace
calculation, derivative of the baryon number current J

μ
B and the lepton number

current J
μ
L are given by

∂μJ
μ
B =

∑

q

∂μ

(
1

3
q̄γ μq

)
= i

Nf

32π2

(
−g2

2FaμνF̃aμν + g2
1BμνB̃μν

)
, (2.7)

∂μJ
μ
L =

∑

l

∂μ

(
l̄γ μl + ν̄lγ

μνl

) = i
Nf

32π2

(
−g2

2FaμνF̃aμν + g2
1BμνB̃μν

)
,

(2.8)

where Nf is the number of flavor and g1 is U(1)Y gauge coupling. Fa
μν (a = 1, 2, 3)

and Bμν are the field strengths of SU(2) gauge field Aa
μ and U(1) gauge field Bμ,

respectively. What is important is that the two relations imply ∂μ(J
μ
B − J

μ
L ) = 0,

but ∂μ(J
μ
B + J

μ
L ) 	= 0. This is called U(1)B+L anomaly.

Again, once we introduce the baryon number denoted as

B = i

∫
d3x J 0

B =
∑

q

i

∫
d3x

1

3
q̄γ 0q, (2.9)

1Chiral fermions are defined as ψL(x) = PLψ(x) and ψR(x) = PRψ(x) with projection
operators, PL = (1 − γ5)/2 and PR = (1 + γ5)/2.
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the time variation �B can be expressed by those of the Chern-Simons numbers NCS
for SU(2)L and nCS for U(1)Y

�B = B(tf ) − B(ti) = Nf (�NCS − �nCS) , (2.10)

with

NCS = − g2
2

16π2

∫
d3x 2εijkTr

[
∂iAjAk + i

2

3
g2AiAjAk

]
, (2.11)

nCS = − g2
1

16π2

∫
d3x εijk∂iBjBk, (2.12)

where Ai ≡ Aa
i τ

a/2 and τa is the Pauli matrix.
Under the gauge transformations with representations of UY for U(1) and U for

SU(2), the gauge fields Ai and Bi transform

Bi → Bi + i

g1
(∂iUY )U−1

Y , (2.13)

Ai → UAiU
−1 + i

g2
(∂iU)U−1. (2.14)

Thus, it is seen that, although nCS does not change under the gauge transformation,
NCS does:

δNCS(U) = 1

24π2

∫
d3x εijkTr

[
(∂iU)U−1(∂jU)U−1(∂kU)U−1

]
. (2.15)

Recalling Eq. (2.10), it can finally be understood that the variation of the baryon and
lepton numbers are proportional to that of NCS.

Generally, a 2 × 2 unitary matrix can be written as U = a1 + ib · τ with
a2 + |b|2 = 1. Therefore, the topology of SU(2) is equal to the three-dimensional
sphere S3. The property of S3 is mathematically π3(S3) = Z,2 which implies that
multiple degenerate vacua distinguished by an integer exist. This situation results in
the integer value of NCS. For instance, if we take U(1)(x) = (x0 + ix · τ)/r with
r = (x2

0+|x|2)1/2, it leads to δNCS
(
U(1)

) = 1. Moreover, taking U(n)(x) = [
U(1)

]n

produces δNCS
(
U(n)

) = n. Therefore, only the variation of the Chern-Simons
number of SU(2) can contribute to those of baryon and lepton numbers. However,
the contribution to �B from U(1) is nothing because U(1) does not own degenerate
vacua that topologically vary.3 Thus, only left-handed particles are produced by the
(B + L)-violating process.

2πm implies the m-th homotopy group.
3Because, π3(U(1)) = 0.
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Energy

−1 0 +1

High temperature

Low temperature

NCS

Esph

Fig. 2.2 Description of transition between two degenerate vacua implying. The curved arrow
indicates the sphaleron process. The dashed arrow shows the instanton. The height of the potential
corresponds to the energy of the sphaleron Esph

As mentioned in the opening sentence, the sphaleron process can be described
by a transition between degenerate vacua characterized by NCS. Figure 2.2 shows
two kinds of the transition that changes NCS. The lower dashed arrow indicates
the instanton,4 which occurs at low temperature. The transition rate is extremely
suppressed and negligible [2]. On the other hand, the upper curved arrow represents
the sphaleron, and it crosses the top of a barrier whose value corresponds to the
energy of the sphaleron (∼10TeV). Apart from the instanton process, the sphaleron
process frequently occurs at high temperature. However, as discussed below, the rate
differs between EW symmetric and broken phase.

Finally, we give a brief explanation about particle production through the
sphaleron process. An intuitive explanation is held in Ref. [4]: vacuum is filled
with particles that have negative energies. However, once particle interacts with
gauge field, it can affect the energy shift of the particle. And, it follows that the
production of the particle with positive energy. For the detailed discussion, see
Ref. [5–7].

2.1.1.2 Sphaleron

Originally, the sphaleron implies a solution to the classical field equation at finite
temperature. While the instanton is the classical solution in the 4-dimensional
Euclidean action, the sphaleron is the static but unstable solution found by

4In a precise sense, this is called a constrained instanton.
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Energy

configuration
space

vacuum

vacuum

NCS=0

NCS=1

Fig. 2.3 Configuration of the sphaleron which is located at the saddle point in the least-energy
path between two degenerate vacua [8]. (Copyright ©Koichi Funakubo)

Klinkhamer and Manton [3, 9]. As drawn in Fig. 2.3, the sphaleron corresponds
to the configuration with NCS = 1/2 in the least-energy path that connect two
distinct vacua next to each other. The configuration is located at the top of the
barrier but a saddle point, and its energy is finite.

As carefully explained in [7, 8], the sphaleron solution can be found by a so-
called minimax procedure. For finding the solution, it would be important whether
a configuration that yields finite energy can be defined at the 3-dimensional infinity
S2. In the procedure, considering a product S1 × S2, we firstly construct a 3-
dimensional sphere S3 described by (μ, θ, φ), where μ corresponds to a loop
parameter with μ ∈ [0, π ]. The topology is π3(S

3) � Z, which implies an
existence of noncontractible configuration. Along the direction of μ, we find
a saddle point at μ = π/2 with the most energy in the least path as in
Fig. 2.3, and it corresponds to the sphaleron configuration. On another front,
μ = 0 and π corresponds to the vacuum configuration. Therefore, finding
an extremum of maximum value of the sphaleron energy finally leads to the
solution.

Let us take a look at 4-dimensional SU(2) gauge-Higgs system. The Lagrangian
is given by

L = −1

4
Fa

μνF
aμν + (Dμ�)†Dμ� − λ

(
�†� − v2

2

)2

, (2.16)
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where � is the SU(2) doublet Higgs field and v � 246 GeV. Taking A0 = 0 gauge,
one can obtain a static energy5

Esph =
∫

d3x

[
1

4
Fa

ijF
a
ij + (Di�)†(Di�) + λ

(
�†� − v2

2

)2]
. (2.17)

In order to obtain the finite Esph, the fields � and Ai should be the vacuum
configurations at r = |x| = ∞

�(r = ∞) = U(θ, φ)

(
0

v/
√

2

)
, Ai(r = ∞) = − i

g2
∂iU(θ, φ)U−1(θ, φ),

(2.18)

where spherical coordinate (r, θ, φ) is employed. Let us extend U(θ, φ) to a
noncontractible loop configuration U(μ, θ, φ)

U(μ, θ, φ) =
(

eiμ(cos μ − i sin μ cos θ) eiφ sin μ sin θ

−e−iφ sin μ sin θ e−iμ(cos μ + i sin μ cos θ)

)
,

(2.19)

where it is required that U(μ, θ, φ) = U(μ, θ + π, φ) = U(μ, θ, φ + 2π) and
U(0, θ, φ) = U(π, θ, φ) = 1. With the above configuration, the ansatz can be
described by [3, 9, 10]

�(μ, r, θ, φ) = v√
2

[
(1 − h(r))

(
0

e−iμ cos μ

)
+ h(r)U(μ, θ, φ)

(
0
1

)]
,

(2.20)

Ai(μ, r, θ, φ) = − i

g2
f (r)∂iU(μ, θ, φ)U−1(μ, θ, φ). (2.21)

The functions of f and h imposed the following boundary conditions on

lim
ξ→0

f (ξ) = 0, lim
ξ→0

h(ξ) = 0, (2.22)

lim
ξ→∞ f (ξ) = 1, lim

ξ→∞ h(ξ) = 1. (2.23)

5Here, we neglect a contribution from U(1)Y since the effect is a few %.
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with the dimensionless radial distance ξ ≡ g2vr . These ansatz yield

Esph =4πv

g2

∫ ∞

0
dξ sin2 μ

[{
4

(
df

dξ

)2

+ 2

ξ2
[f (1 − f )]2 sin2

}
+ ξ2

2

(
dh

dξ

)2

+[h(1 − f )]2 + (1 − h)2f 2 cos2 μ − 2h(1 − h)f (1 − f ) cos2 μ

+ λ

4g2
2

ξ2(h2 − 1)2 sin2 μ

]
. (2.24)

It should be emphasized that the sphaleron energy functional is proportional to v.
In other words, the sphaleron energy becomes 0 if in the symmetric phase, that is,
the sphaleron solution exists only in the broken phase. Again, as mentioned before,
the (B +L)-violating process can occur in the symmetric phase, and we generically
call it the sphaleron process.

Taking μ = π/2, one can obtain the equations of motion for the sphaleron
solution

d2

dξ2 f (ξ) = 2

ξ2 f (ξ)(1 − f (ξ))(1 − 2f (ξ)) − 1

4
h2(ξ)(1 − f (ξ)),

(2.25)

d

dξ

(
ξ2 dh(ξ)

dξ

)
= 2h(ξ)(1 − f (ξ))2 + λ

g2
2

ξ2(h2(ξ) − 1)h(ξ). (2.26)

In the equations, only λ and g2 can enter as parameters. Since we know not only
g2 but λ by the measurements of the Higgs mass, the sphaleron energy is finally
given by ∼ 9.08 TeV [11]. It should be emphasized that the sphaleron energy
estimated with finite temperature potential becomes smaller than that with only
zero-temperature potential, because the true solution is obtained by including the
finite-temperature effect. Moreover, it differs in each model since it depends on
the Higgs potential as estimated in [12–14]. The value is crucially important for a
criterion of the strong first-order phase transition. Table 2.1 shows some values of
E(T ) normalized by Esph(T ) = 4πv(T )E(T )/g2.

One may wonder whether the sphaleron process can be observed in high-energy
collisions. Actually, it has been a long-standing question [15–18]. Recently, the
discussion has been revisited by [19], in which they claim that band effect caused by

Table 2.1 Sphaleron energy in various models. The sphaleron energy is normalized by Esph(T ) =
4πv(T )E(T )/g2, and TC represents critical temperature at which two degenerate minima appear
in the Higgs potential

Model E(TC)

Standard model [3] 2.0

Minimal supersymmetric standard model [12] 1.769

Real-singlet model [13] 1.92
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periodic potential of the sphaleron can enhance the process yielding detectable cross
section for the (B + L)-violating events. However, as discussed in [20, 21], when
we formulate the (B + L)-changing scattering amplitude, there would be another
suppression factor coming from an overlap between the state for the classical
configuration and the physical two-particle states.

2.1.2 Chiral Gauge Theory and CP Phase

If theory possesses chiral interaction and CP phase, it implies C and CP violations.
Therefore, the theory can satisfy the Sakharov second condition. Actually, the SM
can satisfy it, because the SM is the chiral gauge theory and it maximally breaks
C symmetry. Besides, the CP phase known as the Kobayashi-Maskawa (KM) phase
also exists in the model.

2.1.3 First-Order Electroweak Phase Transition

In electroweak phase transition (EWPT), the vacuum expectation value (VEV) of
the SU(2) Higgs doublet is an order parameter, and the first-order EWPT implies
that the VEV suddenly becomes nonzero value at some critical temperature TC as
seen in Fig. 2.4. Although the VEV is zero when the Universe is at high temperature,
it suddenly gets a nonzero value vC at TC . This discontinuity is the remarkable
feature of the first-order EWPT, while the critical VEV does not exist in the second-
order EWPT.

In Fig. 2.5, the situation at the first-order EWPT is described in terms of the
effective potential of the Higgs. At T > TC , the electroweak symmetry is kept,
and then, two degenerate minima appear at TC . As the Universe cools, the effective
potential eventually takes the wine-bottle shape. What is important is that a negative
contribution is necessary to induce the degenerate minima in the effective potential,
and as discussed later, this contribution comes from only bosons.

T

vC

TC

v(T )

v

Fig. 2.4 Dependence on the VEV of the Higgs doublet on temperature at the first-order EWPT.
Although v = 0 at high temperature, it gets nonzero value denoted as vC at the critical temperature
TC . And then, v(T ) eventually becomes that at zero temperature as temperature decreases
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Fig. 2.5 Shape of the
effective potential Veff of the
Higgs in the first-order
EWPT. At T > TC , it has
only one minimum, and then,
two degenerate vacua
separated by a potential
barrier appear at T = TC .
Finally, the shape becomes
that at zero temperature

Veff

vC
ϕ

T > TC T = TC T = 0

v

Fig. 2.6 Description of a
bubble nucleation. Bubble
wall separates the broken
phase (v 	= 0) from the
symmetric phase (v = 0).
Once the bubbles are created,
they start to expand. EWPT
finishes when the Universe is
filled with these bubbles v = 0

v = 0

Bubble

If the first-order EWPT is achieved, a bubble can be nucleated as shown Fig. 2.6.
One may easily be able to imagine the situation by considering boiled water in
which two different phases, that is, liquid and gas, exist. The EW symmetry is
broken inside the bubble, but the symmetry is kept outside it. Once the bubbles
are nucleated, they start to expand. As mentioned in the beginning of the section,
the third condition of the Sakharov criteria can be satisfied by the expansion of the
bubble, because the (B + L)-changing rates in the broken and symmetric phases
are different from each other. That is, the bubble expansion makes it possible to
store particles, which are produced by the sphaleron process in the symmetric phase,
before the inverse process occurs.

In Fig. 2.7, a point described by a cross mark is in the symmetric phase at t = t1.
As a bubble expands, the cross mark is included in the bubble at t = t2 (> t1). The
rates in the broken (t = t2) and symmetric (t = t1) phases are given by

�
(b)
sph � T 4e−Esph/T , (2.27)

�
(s)
sph ∼ κ(α2T )4, (2.28)

where (b) and (s) represent the broken and the symmetric phase, respectively. While
the former is calculated by the WKB approximation [22], and the latter is estimated
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Fig. 2.7 Description of a
bubble expansion. At t = t1,
a point expressed by a cross
mark is in the symmetric
phase. As the bubble expands,
it can be included inside the
bubble in which the
electroweak symmetry is
breaking

t = t1

t = t2

Bubble

Bubble

by dimensional analysis with κ = 0.1 ∼ 1.0 [23, 24].6 As seen in these expressions,
the (B + L)-changing rate in the broken phase is extremely suppressed by the
Boltzmann suppression factor, but that in the symmetric phase does not receive such
a suppression.

In order to include the produced particles by the sphaleron process inside bubble,
its expansion speed would be important. If it is faster than the sphaleron process in
the symmetric phase, nonzero baryon number can be successfully incorporated in
the bubble before the inverse reaction occurs.

Based on discussions in [8, 25], let us estimate time scales of relevant interaction
to relativistic particle at temperature T . The time scale is naively given by the mean
free path λ

t � λ = 1

σ · n(T )
, (2.29)

where σ � α2/T 2 is total cross section and n(T ) � g∗ζ(3)T 3/π2 is the particle
number density with the Riemann zeta function ζ(3) = 1.2020569 · · · , and the
effective degree of freedom g∗ = ∑

boson gB + 3
4

∑
fermi gF . Taking T ∼ TC ∼

100 GeV, one can obtain the following time scales

tH = H(T )−1 � mpl

1.66
√

g∗T 2
� 1014 GeV−1, (Hubble)

ts � 1

α4
s T

� 0.1 GeV−1, (QCD interaction)

6The Monte Carlo simulation is used in Ref. [23], and lattice simulations with hard-thermal loop
are performed in Ref. [24].
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tW � 1

α4
2T

� 1 GeV−1, (Weak interaction)

t
(s)
sph � 1

α4
2T

� 103 GeV−1, (Sphaleron process)

where we use the Hubble parameter as H(T ) � 1.66
√

g∗T 2/mpl with the Planck

mass mpl = 1.2 × 1019 GeV. The above expressions say that ts < tW < t
(s)
sph � tH ,

which implies that all of the interactions are chemical equilibrium. On the other
hand, the wall width Lw and the velocity vw of the bubble are estimated in [26, 27]

Lw � 0.01 ∼ 0.4 GeV−1, vw � 0.1c ∼ 0.8c, (2.30)

where c is the speed of light. Thus, the time scale of the bubble expansion is given by

tw = Lw

vw

� (0.001 ∼ 4) GeV−1 � t
(s)
sph. (2.31)

It turned out that the sphaleron process is in nonequilibrium, and the dynamics of
the bubble makes it possible to capture the produced particles before the sphaleron
inverse process.

2.2 Mechanism of Electroweak Baryogenesis

As we have seen so far, if electroweak phase transition is the first order, bubble can
be nucleated at nucleation temperature TN . TN is generally lower than TC ,7 and
this situation is the so-called supercooling. The bubbles expand and the Universe is
finally filled with them, which implies EWPT ends.

Once the bubble is nucleated, particle and antiparticle near the bubble are
scattered as in Fig. 2.8, where the particles and the antiparticles are described
with the chirality indexes L and R. In the scattering process, CP violation yields
a difference of transmission to the bubble between the particle and antiparticle.
Figure 2.9 shows an example where the antiparticles are bounced while the particles
are transmitted. And, it follows that number density between them also differ.
Defining the number density of the particle and antiparticle as nL,R and nL̄,R̄ , one
can understand the difference near the bubble as

nL − nL̄ 	= 0, nR − nR̄ 	= 0. (2.32)

7For example, TN = 77.8 GeV and TC = 91.5 GeV in the scale-invariant two Higgs doublet
model [14].
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Broken 
phase

Γ(b)
sph

Γ(s)
sph

v = 0

v = 0

Symmetric phase
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Fig. 2.8 As the bubble expands, particle q and antiparticle q̄ collide with it
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Fig. 2.9 If theory possesses CP violation, transmission rate to the bubble is different between the
particle and antiparticle. This figure shows an example that the antiparticles q̄L and q̄R are bounced

At this point, however, the net baryon number density still remains zero

nB = nL − nL̄ + nR − nR̄ = 0. (2.33)

Once the sphaleron process occurs, the above expression can be changed because
the left-handed particles are produced by it, which results in8

nB = nL − nL̄ + nR − nR̄ 	= 0. (2.34)

8Here, although we simply consider only the sphaleron process, there are actually other processes
involved in changing the number densities such as the Yukawa interaction. If such an interaction is
in equilibrium, it works to decrease the produced left-handed particles.
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Fig. 2.10 The produced
(B + L) numbers can be
included in the bubble thanks
to its expansion right after the
sphaleron process
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Then, the nonzero nB can finally be included into the bubble as in Fig. 2.10.9

2.2.1 Strong First-Order Electroweak Phase Transition

Actually, even if the bubble takes the nonzero baryon number in, it may disappear
if the sphaleron process inside the bubble is enough fast to wash out it. In order to
avoid this situation, we need to impose one important condition on the sphaleron
rate in the broken phase

�
(b)
sph < H(T ), (2.35)

and this expression can be rewritten by [12]

v(T )

T
>

g2

4πE(T )

[
42.97 + log(κNtrNrot) + log

(
ω−
mW

)
− 1

2
log

( g∗
106.75

)

−2 log

(
T

100 GeV

)]

≡ ζsph(T ), (2.36)

9For simplicity, only three left-handed quarks and left-handed lepton are described in Fig. 2.10, but
the quarks and leptons over three generations are actually produced in the sphaleron process.
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Table 2.2 The baryon number conservation condition in three models: minimal supersymmetric
standard model [12], real-singlet model [13], and scale-invariant two Higgs doublet model [14]

Model vC/TC ζsph(TC) vN/TN ζsph(TN )

Minimal supersymmetric standard model 107.096
116.274 = 0.921 − 116.727

115.585 = 1.010 1.383

Real-singlet model 172.83
148.87 = 1.16 1.14 − −

Scale-invariant two Higgs doublet model 211.0
77.8 = 2.31 1.23 229.0

77.8 = 2.94 1.20

where Ntr and Nrot are the translational and rotational zero-mode factors of the
fluctuations about the sphaleron, ω− is the negative mode, and κ is the O(1) factor
[28, 29]. This criterion is called the baryon number conservation condition, and the
situation that the condition is satisfied is known as the strong first-order EWPT. The
dominant contribution to the right side comes from E(T ), and the large value results
in weak condition for the strong first-order EWPT.

The baryon number conservation criterion is usually estimated at TC or TN ,
namely, it would be vC/TC > ζsph(TC) or vN/TN > ζsph(TC). vN is the VEV at
TN which is larger than vC ; therefore it is obtained that vN/TN > vC/TC . It should
be emphasized that, although many literatures roughly use vC/TC > 1.0, the right
and left sides of the condition should independently be estimated and compared.
The condition originally differs in each model and it does affect a possible
range of model parameter. As discussed later, the baryon number conservation
condition is really important in terms of testability of EWBG, because it can predict
physical quantities such as mass of a new particle and coupling. Table 2.2 shows
vC/TC, ζsph(TC), vN/TN, and ζsph(TN) in various models [12–14], and the unit of
v and T is GeV. These analyses have been done with potential composed of tree, the
one-loop Coleman-Weinberg [30, 31] and the finite-temperature one-loop potential
[32]. Besides, the contribution of the zero mode factors are included in [12], and it
is referred that the effect amounts to 10%. For the derivation of NtrNrot, see [12].

2.2.2 Bubble Nucleation

Once the bubble is nucleated at TN , EWPT can start. The bubble can grow if the
radius is larger than some critical size and convert fill the Universe to the broken
phase, finally. The bubble with the critical size is called the critical bubble, and it
can be formulated when a certain region simultaneously has a nonzero VEV.

As discussed in Ref. [33], the critical radius of the bubble is extracted by the
nucleation rate per unit time and unit volume

�N(T ) = �0e
−�F/T , (2.37)

where �0 is a prefactor and �F represents the variation of the free energy with a
radius r

�F = 4π

3
[ps(T ) − pb(T )] r3 + 4πr2σ, (2.38)
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where ps(b) corresponds to the pressure in the symmetric (broken) phase and σ

is the surface free energy. They are given by ps(T ) = −Veff(0; T ), pb(T ) =
−Veff(v(T ); T ) and σ = ∫

dz (∂ϕ/∂z)2 with the constant background field ϕ of
the SU(2) Higgs and perpendicular coordinate to the bubble wall. It depends on the
size of the radius whether the bubble shrinks or expands: if the radius is small, the
surface free energy dominates, but the pressure does if the radius is large. The radius
that balances these two contributions is called the critical radius r∗, which is given
by considering a maximum of �F

r∗ = 2σ

pb(T ) − ps(T )
. (2.39)

The bubble can grow if r > r∗, and the expression yields �F∗ = 4πσr2∗/3.
The nucleation temperature is defined by [34]

�N(TN)/H 3(TN) = H(TN), (2.40)

where �N(TN) is the nucleation rate

�N(T ) � T 4
(

Ecb(T )

2πT

) 3
2

e− Ecb(T )

T , (2.41)

with the energy of the critical bubble Ecb(T ). The Eq. (2.40) implies that one bubble
can be nucleated in the horizon at TN , and it follows that

Ecb(TN)

TN

− 3

2
log

(
Ecb(TN)

TN

)
= 152.59 − 2 log g∗(TN) − 4 log

(
TN

100 GeV

)
.

(2.42)

Thus, it is seen that Ecb/T � 150 is naively necessary for the EWPT.
The critical bubble is the static solutions for equations of motion with the least

energy, which smoothly connects the symmetric phase to the broken phase. The
solutions have been obtained in a concrete model such as the MSSM [12] and scale-
invariant 2HDM [14], numerically. For example, the energy of the critical bubble in
the scale-invariant 2HDM is described by

Ecb =
∫

d3x
[
(∂i�1)

†∂i�1 + (∂i�2)
†∂i�2 + Veff(�1,�2, T )

]
(2.43)

where �i (i = 1, 2) is the SU(2) Higgs doublet and the pure-gauge configurations
are employed for the gauge fields, yielding Fa

ij = Bij = 0. Let us parametrize the
Higgs fields as

�1(r) = 1√
2

(
0

ρ1(r)

)
, �2(r) = 1√

2

(
0

ρ2(r)

)
(2.44)
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with r = |x|, and then, we take the following dimension less quantities

ξ = v(T )r, h1(ξ) = ρ1(r)

v(T ) cos β
, h2(ξ) = ρ2(r)

v(T ) sin β
, (2.45)

with v2/v1 = tan β. Thus, the equations of motion for the bubble solution are given
by

− 1

ξ2

d

dξ

(
ξ2 dh1(2)

dξ

)
+ 1

v4(T ) cos2 β(sin2 β)

dVeff

dh1(2)

= 0, (2.46)

with the boundary conditions

dh1,2(ξ)

dξ

∣∣∣∣
ξ=0

= 0, h1,2(ξ = ∞) = 0. (2.47)

Actually, it is known that the bubble profile is approximated by a kink-type
configuration

ρi(r) ∼ vi(T )

[
1 − tanh

(
r − R

Lw

)]
, (2.48)

where R is the radius of the bubble and Lw is the wall width.
Finally, let us comment on the baryon number conservation condition at TN .

If the condition is satisfied at TC , it is also satisfied at TN . Since TN is lower
than TC , and vN , which is the VEV at TN , is larger than vC , it is found that
vN/TN becomes larger than vC/TC . In addition, the sphaleron solution corre-
sponds to a saddle point with the least energy in the path that connects two
degenerate vacua, and it is the solution at finite temperature. Therefore, if the
temperature is lower, the solution is displaced from the real solution. This situation
results in the larger energy of the sphaleron, and it also causes the smaller value
of ζsph(T ).

2.3 Current Status of EWBG

The Standard Model was the first candidate for EWBG; however, it turned out that
Sakharov’s criteria are not satisfied in the framework. One remarkable thing is that
discovery of the Higgs boson with 125 GeV mass [35, 36] excludes the possibility,
and information related to the Higgs physics gives some restrictions on various new
scenarios.



26 2 Electroweak Baryogenesis

2.3.1 The Standard Model EWBG

EWBG in the SM cannot function due to the following two reasons:

1. Electroweak phase transition becomes crossover for mh > 73 GeV,10

2. The CP violation in the SM is too small to generate the observed BAU.

The first reason is the strongest one that the SM fails in EWBG. Lattice calculations
show that the region for mh > 73 GeV corresponds to crossover [37–41], whereas
the discovered Higgs has 125 GeV mass. And, one another problem is that the CP
violation in the SM is too small to produce the observed BAU [42–45].11 Employing
naive dimensional analysis, one can estimate the size of CP violation through the
Jarlskog determinant

ACP = (m2
t − m2

c)(m
2
t − m2

u)(m
2
c − m2

u)(m
2
b − m2

s )(m
2
b − m2

d)(m2
s − m2

d)J

(2.49)

with J = Im(VubVcbV
∗
ubV

∗
cd) � s12s23s13 sin δKM � 3 × 10−5. The dimensionless

CP phase δCP with TC ∼ 100 GeV is roughly given by

δCP ∼ ACP

T 12
C

∼ 10−20. (2.50)

The above value is obviously too small to explain nB/nγ ∼ 10−10. Then, our
present consensus is that the CP phase of the SM cannot create enough baryon
numbers, which leads to the demand of new physics beyond the SM for the
successful EWBG.

2.3.2 Physics Beyond the Standard Model

As a result of the drawbacks of the SM EWBG, the next possibility is new physics.
Since new physics generally brings new CP phase, the second problem can be easily
solved. However, such a new CP phase may induce the EDMs, so we should also
consider the experimental constraints. In other words, the EDM measurements can
examine the scenarios. Regarding the achievement of the first-order phase transition
with the correct Higgs mass, introduction of new boson helps to create a barrier
needed for the phase transition.

10Perturbative calculation shows smaller value of mh � 42 GeV for the first-order phase transition
[1].
11To be exact, this is because the size of the CP violation in the SM depends on the structure of the
Cabibbo-Kobayashi-Maskawa matrix.
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2.3.2.1 Phase Transition in New Physics

As seen in Fig. 2.5, the first-order EWPT is that the effective potential has two
degenerate vacua at T = TC . In order to see an origin of the barrier, we consider
the finite-temperature one-loop effective potential in the SM with one constant
background field ϕ. It consists of three parts:

Veff(ϕ) = V0(ϕ) + V1(ϕ) + V1(ϕ, T ). (2.51)

V0(ϕ) is the tree-level potential

V0(ϕ) = −μ2

2
ϕ2 + λ

4
ϕ4, (2.52)

and V1(ϕ) is the one-loop Coleman-Weinberg potential at zero temperature [30, 31]

V1(ϕ) =
∑

i

ni

m4
i (ϕ)

64π2

(
ln

m2
i (ϕ)

μ2
− ci

)
(2.53)

where i = h, G0, G±, W, Z, t, b. ni is the degrees of freedom of the particle
given by nh,G0 = 1, nG± = 2, nQ = 2 · 3, nZ = 3, nt = nb = −4NC , ci is
3/2 (5/6) for scalars and fermions (gauge bosons), and mi(ϕ) is a field-dependent
mass of the species i. The third term is given by[32]

V1(ϕ, T ) = T 4

2π2

[
∑

i=boson

niIB(a2
i ) +

∑

i=fermion

niIF (a2
t )

]
, (2.54)

where

IB(a2) =
∫ ∞

0
dxx2 log

(
1 − e

√
x2+a2

)
, (2.55)

IF (a2) =
∫ ∞

0
dxx2 log

(
1 + e

√
x2+a2

)
, (2.56)

with a2
i = m2

i (ϕ)/T 2. Taking a limit of m2
i (ϕ)/T 2 � 1 called the high-temperature

expansion, one obtains

IB(a2) = −π4

45
+ π2

12
a2 − π

6
(a2)3/2 − a4

32

(
log

a2

αB

− 3

2

)
+ O(a6) + · · · ,

(2.57)

IF (a2) = 7π4

360
− π2

24
a2 − a4

32

(
log

a2

αF

− 3

2

)
+ O(a6) + · · · , (2.58)
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with log αB = 2 log 4π + 3/2 − 2γE and log αF = 2 log π + 3/2 − 2γE , and
γE is the Euler constant. It is seen that only bosons bring negative contributions to

the potential as V1(ϕ, T ) � −∑
boson

[
m2

i (ϕ)
]3/2

T . Finally, the high-temperature
expansion results in the following simple effective potential

V HE
eff = D(T 2 − T 2

0 )ϕ2 − ET ϕ3 + λT

4
ϕ4, (2.59)

where

D = 2m2
W + m2

Z + 2 + 2m2
t

8v2 , (2.60)

T 2
0 = m2

h − 8Bv2

4D
, (2.61)

E = 2m3
W + m3

Z

4πv3 , (2.62)

B = 3

64π2v4 (2m4
W + m4

Z − 4m4
t ), (2.63)

λT = λ − (log corrections). (2.64)

With the potential at T = TC , the first-order phase transition is described by

V HE
eff = λT

4
ϕ2(ϕ − vC)2, vC = 2ETC

λTC

, (2.65)

where two degenerate vacua at ϕ = 0 and vC are given. And, this expression leads
to

vC

TC

= 2E

λTC

. (2.66)

As we discussed earlier, the size of vC/TC is important for the baryon number
preservation condition which decides whether created baryon asymmetry is left
until the present Universe. The high-temperature expansion tells us that the ratio
corresponds to that of the third and fourth terms of the effective potential. The third
term plays a role in negative effect to the effective potential, and it comes from only
the boson contribution. If we introduce new boson, the contribution is added to the
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coefficient of E.12 Therefore, new physics with additional boson has a possibility
of successful first-order electroweak phase transition.13

Currently, various new physics are studied in terms of phase transition. Here, we
introduce two major scenarios for the first-order phase transitions:

1. Thermal loop-driven case.
2. Tree potential-driven case.

The first case is that thermal loop effect brings a cubic term of −T (ϕ2)3/2 which
create a barrier in the effective potential. This case is applied to the SM, MSSM
[47–55], and two Higgs doublet model [14, 56–63]. In this case, so-called non-
decoupling effect is necessary for the first-order EWPT. It implies that the mass of
new boson described by m2(ϕ) = g2ϕ2 + M2, where M and g are mass parameter
and dimensionless coupling in the Lagrangian, receives dominant contribution from
gϕ. The cubic term is described by −(m2(ϕ))3/2T ∼ −M3T if M > gϕ, which
results in no negative contribution to the effective potential. In other words, situation
without dimensionful parameter easily tends to cause the first-order EWPT [14,
56]. However, such a non-decoupling limit needs large value of the dimensionless
coupling, and it follows that the cutoff scale at which |g| > 4π is close to the
electroweak scale. For example, the cutoff scale is at 6.3 TeV in scale-invariant two
Higgs doublet model [14] where dimensionful parameters are forbidden at tree level
and electroweak symmetry breaking is radiatively caused.

The second case is that tree-level potential creates the barrier, and model with a
real singlet is classified into this case [13, 64–82]. Here, a nonzero coupling between
real singlet and SU(2) Higgs is necessary for getting different phase transition from
the SM case. Such a coupling can deviate the Higgs coupling from the SM value
due to the mixing, and it becomes one of the signature of the phase transition.

In addition to the above two patterns, the barrier is also able to be caused by
other scenarios [83]. For example, if we consider that dimension six operator of
(H †H)3 appears after heavy particle is integrated out at a new scale �, it brings a
−ϕ4 term to the potential [84–86].14 Also, triplet extensions are proposed to fulfill
the first-order phase transition [87–89].

A fascination for EWBG is high testability. In addition to the SM, the scenario in
MSSM is presently excluded [53, 90–92]. In MSSM, right-handed stop is required
to be mt̃R

< 120 GeV, and the scenario predicts that σ(gg → H → V V )/σ(gg →
H → V V )SM ∼ (2−3). However, the value found to be inconsistent with the LHC
data, and the region for the light stop mass is also excluded by the direct search

12In principle, smaller value of λ is also able to cause larger vC/TC . However, it would be less
possibility that the coupling λ is deviated from the SM value unless some peculiar parameters are
chosen.
13It is also proposed that new fermion which strongly couples to the Higgs can strengthen the
first-order phase transition [46], where O(1) Yukawa coupling is needed.
14It turned out that the scale is somewhat low � ∼ 800 GeV.
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Bubble

Broken 
phase

Fig. 2.11 Right: Interaction between fermion fi and bubble walls indicated by va and vb with
a, b = 1, 2. Left: One example of particle diffusion caused by the process in the right diagram

at the LHC [53, 54, 90, 93]. What we can guess from the situation is that colored
particles would not play a role in the first-order EWPT.

2.3.2.2 CP Violation in New Physics

CP-violating process should be involved in an interaction between particle and
bubble wall. Figure 2.11 shows an example of the interaction between fermion fi

and the bubble wall represented by two different VEVs va,b (a, b = 1, 2). In the
right figure, the CP phases exist in each vertices, and the diagram causes diffusions
such as the left figure. This kind of CP-violating interactions is seen in several
new physics such as next-to-MSSM [94, 95] and 2HDM [62, 96–100], and they
can induce nonzero EDMs. For example, in the framework of the general 2HDM
[100], the fermion can be the top quark with the complex Yukawa coupling, and
the coupling produces the electron and quark EDMs at two-loop level. Moreover,
if we assume that flavor-changing process is also able to supply the relevant CP
violation to the BAU, it leads to the flavor-changing neutral current in broken phase.
In [100], the top quark decays into the charm, and Higgs is discussed with relating
EWBG, and the predicted value is Br(t → ch) � 0.15% with one benchmark point.
The process has been searched for by ATLAS and CMS, and the obtained limits
are Br(t → ch) < 0.46% [101] and Br(t → ch) < 0.40% [102], respectively.
Although the prediction is below the current limits, the search at HL-LHC [103]
which aims to reach Br(t → ch) < 0.015% has a great deal of possibility
to examine the scenario. Thus, not only the EDMs but also flavor physics open
windows to look into EWBG in new physics.

At present, we do not know which new model is likely. Our understanding is that
the EWBG hypothesis needs something new at electroweak scale. The possibility is
able to be discussed in terms of an effective theory where heavy degrees of freedom
are integrated out. So, in the next section, we would like to consider a situation in
which only relevant electroweak-interacting particles exist.
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Chapter 3
Model

Abstract An extension of the bosonic sector and CP phase are required to construct
successful EWBG. The former plays a role in the negative contribution to the
effective potential of the Higgs, and the latter is essential for generating the observed
BAU. As seen in the light stop scenario, the introduction of the new colored particle
into the model would be disfavored by the current LHC results. Regarding the CP
phase, it should appear in the electroweak interaction with the Higgs VEVs. Taking
into account this situation, the possible setup is as follows:

UV-complete models ⊃ Extended Higgs sectors + EW-interacting fermions,

where it is assumed that irrelevant heavy particles are integrated out whatever a UV-
complete model is. In this chapter, we focus on the extended model introducing new
particles: two Higgs doublets, a real singlet, and EW-interacting fermions.

Keywords Real singlet · 1st order electroweak phase transition

3.1 The Model

Particle contents are shown in Table 3.1. This kind of setup applies to next-to-MSSM
[1, 2], bino-driven EWBG in MSSM [3], and U(1)′-MSSM [4]. New scalars and
fermions have the same charges under the SM interactions. For scalar sectors, the
Lagrangian is given by

Lscalar =
∑

i=1,2

(
Dμ�i

)†
Dμ�i + 1

2
∂μS∂μS − V2HDM − VS − V�S, (3.1)
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90, 015015, Copyright ©2014 American Physical Society, Kaori Fuyuto, Junji Hisano and Eibun
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Table 3.1 Particle contents in our model. Upper: Scalar contents. Lower: Fermion contents

Scalars SU(3)C × SU(2)L × U(1)Y Z2

�1 (1, 2, 1/2) −
�2 (1, 2, 1/2) +
S (1, 1, 0) −
Fermions SU(3)C × SU(2)L × U(1)Y Z2

�̃1 (1, 2, 1/2) −
�̃2 (1, 2, 1/2) +
S̃0 (1, 1, 0) ±

where �1,2 is SU(2) doublet, S is real singlet, and Dμ = ∂μ − ig2
τa

2 Aa
μ − ig1YBμ.

After the scalars get VEVs, they are cast into the form

�1(x) =
(

φ+
1

φ0
1

)
=

(
φ+

1
1√
2

(v1 + h1(x) + ia1(x))

)
,

�2(x) =
(

φ+
2

φ0
2

)
=

(
φ+

2
1√
2

(v1 + h2(x) + ia2(x))

)
, (3.2)

S(x) = vS + hS(x). (3.3)

The potentials are given by

V2HDM = m2
1�

†
1�1 + m2

2�
†
2�2 −

(
m2

3�
†
1�2 + h.c

)
+ λ1

2
(�

†
1�1)

2 + λ2

2
(�

†
2�2)

2

+ λ3(�
†
1�1)(�

†
2�2) + λ4(�

†
1�2)(�

†
2�1) +

[
λ5

2
(�

†
1�2)

2 + h.c

]
,

(3.4)

VS = μ3
SS + m2

S

2
S2 + μ′

S

3
S3 + λS

8
S4, (3.5)

V�S=δ1

2
�

†
1�1S

2+δ2

2
�

†
2�2S

2+μ1�
†
1�1S + μ2�

†
2�2S −

(
μ3�

†
1�2S + h.c

)
.

(3.6)

In order to avoid Higgs-mediated flavor-changing neutral current (FCNC) processes
at tree level, we impose a softly broken Z2 symmetry. As in the case of MSSM,
we also assume another matter parity under which the SM fermions are even and
the EW-interacting fermions are odd. The matter parity forbids a lepton number

violating term such as ¯̃
�1�1lR .

For the Yukawa interactions, we consider the so-called Type II as follows:

−LY = q̄Lf
(u)
2 (iτ 2�∗

2)uR + q̄Lf
(d)
1 �1dR + l̄Lf

(e)
1 �1eR + h.c. (3.7)
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Table 3.2 Assignments of
Z2 symmetry for new
EW-interacting fermions

�̃1 �̃2 S̃0

Type-A − + +
Type-B − + −
Type-C − + +
Type-D − + −

In this type, the top and bottom masses are given by

mt = yt√
2
v2 = yt√

2
v sin β, mb = yb√

2
v1 = yb√

2
cos β, (3.8)

with tan β = v2/v1 and v � 246 GeV. In terms of an estimation of the BAU, it
does not matter which Yukawa-type interaction is chosen since we include only a
contribution from the top quark.

The new EW-interacting fermions are given by

�̃1(x) =
(

φ̃0
1

φ̃−
1

)
, �̃2(x) =

(
φ̃+

2
φ̃0

2

)
, S̃(x). (3.9)

where the fields are described by two components fields. The Lagrangian is
expressed by

Lfer =
∑

i=1,2

¯̃
�iiσ̄

μDμ�̃i + ¯̃
Siσ̄ μ∂μS̃ − V

�̃S̃
. (3.10)

The potential V
�̃S̃

has four relevant Z2 assignments to the BAU as in Table 3.2,

V A
�̃S̃

=c11�̃
a
1εab�

b
1S̃

0+c22�̃
a
2εab(iτ2�

∗
2)

bS̃0+(μ + λS)�̃a
1εab�̃

b
2+

μ
S̃

2
S̃0S̃0+h.c.,

V B
�̃S̃

=c12�̃
a
1εab�

b
2S̃

0+c21�̃
a
2εab(iτ2�

∗
1)

bS̃0+(μ + λS)�̃a
1εab�̃

b
2+

μ
S̃

2
S̃0S̃0+h.c.,

V C
�̃S̃

=c11�̃
a
1εab�

b
1S̃

0+c22�̃
a
2εab(iτ2�

∗
2)

bS̃0+μ�̃a
1εab�̃

b
2+

1

2
(μ

S̃
+ κS)S̃0S̃0+h.c.,

V D
�̃S̃

=c12�̃
a
1εab�

b
2S̃

0+c21�̃
a
2εab(iτ2�

∗
1)

bS̃0+μ�̃a
1εab�̃

b
2+

1

2
(μ

S̃
+κS)S̃0S̃0+h.c.,

(3.11)

where each of �̃1 and �̃2 couples to S̃.
Defining four components spinors as in Appendix A.1, one obtain relevant

interactions between the EW-interacting fermions and scalars
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LA(B)
fer �

{
H̃ 0

(
cH̃ 0S̃
L PLφ0

1(2) + cH̃ 0S̃
R PRφ0

2(1)

)
S̃

+H̃+
(
cH̃±S̃
L PLφ+

1(2) + cH̃±S̃
R PRφ+

2(1)

)
S̃ + (h.c)

}

− H̃+
(
gS¯̃

HH̃S
+ iγ5g

P¯̃
HH̃S

)
H̃+hS − H̃ 0

(
gS¯̃

HH̃S
+ iγ5g

P¯̃
HH̃S

)
H̃ 0hS,

(3.12)

and

LC(D)
fer �

{
H̃ 0

(
cH̃ 0S̃
L PLφ0

1(2) + cH̃ 0S̃
R PRφ0

2(1)

)
S̃

+H̃+
(
cH̃±S̃
L PLφ+

1(2) + cH̃±S̃
R PRφ+

2(1)

)
S̃ + (h.c)

}

− 1

2
S̃

(
gS¯̃

SS̃S
+ iγ5g

P¯̃
SS̃S

)
S̃hS. (3.13)

It should be noted that, while the charged fermions couple to the real singlet in type
A and B, there are no such kinds of interactions in type C and D.

3.1.1 Real-Singlet Limit

Our model owns both 2HDM and singlet, and they can play a role in the first-
order phase transition. As discussed in the last section of Chap. 1, the scenario in
2HDM needs non-decoupling limit which means that dimensionless couplings are
somewhat large, and it follows that cutoff scale is close to electroweak scale. So,
our study considers that a barrier in the Higgs potential is caused by the singlet
contribution. In what follows, we take a real-singlet limit such that the scalar
potentials are cast into the form [5]

V0 = −μ2
H H †H + λH (H †H)2

+ μHSH †HS + λHS

2
H †HS2

+ μ3
SS + m2

S

2
S2 + μ′

S

3
S3 + λS

4
S4, (3.14)

where H is the Higgs doublet of the SU(2). After two scalar fields get the VEVs,
they are given by

H(x) =
(

G+(x)
1√
2

(
v + h(x) + iG0(x)

)
)

, S(x) = vS + hS(x). (3.15)
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For the real-singlet limit, we firstly consider a rotation of the scalar states by an
angle β

(
h1

h2

)
= R(β)

(
h′

1
h′

2

)
,

(
a1

a2

)
= R(β)

(
G0

A

)
,

(
φ±

1
φ±

2

)
= R(β)

(
G±
H±

)
.

(3.16)

with 0 ≤ β ≤ π/2 and

R(β) =
(

cos β − sin β

sin β cos β

)
, (3.17)

which implies that the CP-odd and charged scalars are diagonalized. The CP-even
states are obtained by rotating (h′

1, h′
2) with an angle (α − β)

(
h′

1
h′

2

)
= R(α − β)

(
H

h

)
, (3.18)

where α is denoted as the mixing angle for the diagonalization of h1 and h2 with
−π/2 ≤ α ≤ 0 and mH > mh. In addition, seeing the ration of R(β) in terms of
the basis of (�1 �2),

(
�′

1
�′

2

)
=

(
cos β sin β

− sin β cos β

)(
�1

�2

)
, (3.19)

one obtain

�′
1 =

(
G+

1√
2
(v + h′

1 + iG0)

)
, �′

2 =
(

H+
1√
2
(h′

2 + iA)

)
. (3.20)

This is called he Georgi basis [6] in which only one Higgs doublet has the VEV. Note
that taking sin(β − α) = 1 implies that H = h′

2 and h = h′
1. With the diagonalized

masses, the dimensionless couplings λis are described by

λ1 = 1

v2 cos2 β

(
m2

H1
sin2 α + m2

H2
cos2 α − M2 sin2 β

)
, (3.21)

λ2 = 1

v2 sin2 β

(
m2

H1
cos2 α + m2

H2
sin2 α − M2 cos2 β

)
, (3.22)

λ3 = sin 2α

v2 sin 2β
(−m2

H1
+ m2

H1
) − 1

v2 (M2 − 2m2
H±), (3.23)

λ4 = 1

v2 (M2 + m2
A − 2m2

H±), (3.24)

λ5 = 1

v2 (M2 − m2
A), (3.25)

where M2 = m2
3/ sin β cos β. Here, setting sin(β − α) = tan β = 1 results in

λ1 = λ2.
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Next, assuming that Im(m2
3) = 0 and Im(λ5) = 0, we consider the tadpole

conditions of the scalar potentials with respect to v1 and v2. m2
1 and m2

1 are described
by

m2
1=m2

3 tan β−λ1

2
v2 cos2 β−1

2
(λ3+λ4 + λ4)v

2 sin2 β−δ1

2
v2
S − μ1vS+μ3vS tan β,

(3.26)

m2
2=m2

3 cot β − λ2

2
v2 sin2 β−1

2
(λ3+λ4 + λ5)v

2 cos2 β−δ2

2
v2
S−μ2vS+μ3vS cot β,

(3.27)

where λ ≡ λ1 = λ2. It is understood that m1
1 = m2

2 if tan β = 1, δ1 = δ2, μ1 = μ2.
With the assumptions and definitions of m2

1 = m2
2 ≡ m2 and λ1 = λ2 ≡ λ, the

two Higgs doublet potential of V2HDM is described by

V2HDM = m2
(
�

†
1�1+�

†
2�2

)
−m2

3

(
�

†
1�2+h.c.

)
+ λ

2

{(
�

†
1�1

)2 +
(
�

†
2�2

)2
}

+ λ3(�
†
1�1)(�

†
2�2) + λ4(�

†
1�1)(�

†
2�1) + λ5

2

{(
�

†
1�2

)2 + h.c.

}
,

(3.28)

Taking that �1(2) ∼ H/
√

2, one can rewrite the potential as

V2HDM = −μ2H †H + λeff(H
†H)2, (3.29)

with μ2 = −m2 + m2
3 and λeff = (λ + λ3 + λ4 + λ5)/4. Also, we take that δ1 =

δ2 ≡ λHS , μ1 = μ2 ≡ μHS and μ3 = 0. This requirement produces

V�S = λHS

2
H †HS2 + μHSH †HS. (3.30)

Thus, V2HDM and V�S are finally translated into the first and second lines in
Eq. (3.14). In this limit, relevant particles are the SU(2) Higgs H and real singlet S

for the phase transition.

3.1.2 Real-Singlet Model

In the real-singlet model, the mass matrix is diagonalized by

M2
dia =

(
m2

H1
0

0 m2
H2

)
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Fig. 3.1 Process of the phase
transition. After symmetry
breaking in the singlet
direction occurs, that of the
electroweak also starts

vSYM

EW

ϕ

ϕS

= R(γ )T

(
2λH v2 μHSv + λHSvvS

μHSv + λHSvvS −μ3
S

vS
+ μ′

SvS + 2λSv2
S − μHS

2
v2

vS

)
R(γ ),

(3.31)

with the physical states

(
H1

H2

)
= R(γ )T

(
h

hS

)
=

(
cos γ sin γ

− sin γ cos γ

)(
h

hS

)
, (3.32)

where the tadpole conditions for ϕ and ϕS , which are constant background fields of
h and hS , are used in the mass matrix. Here, H1 corresponds to the Higgs with the
mass of 125 GeV, and H2 is the new scalar.

Since the original interactions for h are scaled to cos γ , the Higgs couplings to
gauge bosons and fermions normalized to those in the SM are given by

κV = gH1V V

hSM
hV V

= cos γ, κF = gH1ff

hSM
hff

= cos γ. (3.33)

The present experimental values are obtained by the ATLAS collaboration [7]

κV = 1.03 ± 0.06, κF = 0.89+0.20
−0.15, (3.34)

and see also the current results by the CMS collaboration [8]. What we emphasize
here is that the mixing is originated from the nonzero values of μHS and λHS , and
they are also essential for obtaining different phase transition from the SM case.

As discussed in Ref. [9], one feature in the real-singlet model is two-step phase
transitions. Figure 3.1 shows the phase transition, in which ϕS initially has a
nonzero VEV with ϕ = 0, and then, ϕ starts to become the nonzero value. Let
us parameterize ϕ and ϕS as

ϕ = r cos θ, ϕS = ϕ0
S + r sin θ, (3.35)
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where −π/2 ≤ θ ≤ 0 and ϕ0
S is a minimum at ϕ = 0. In order to understand

the structure of the phase transition analytically, we prepare the following simple
potential:

V (ϕ, ϕS, T ) = V0(ϕ, ϕS) + 1

2
�H (T )ϕ2 + 1

2
�S(T )ϕ2

S − ET ϕ3, (3.36)

where �H (T ) and �S(T ) are thermal masses for h and hS [10]. The final term is
denoted as the thermal effect from the finite-temperature 1-loop effective potential
as we have seen in the Sect. 2.3. Using the parameterized fields, one rewrites the
potential as

V (r, θ, T ) = C0 + C1r + C2r
2 − C3r

3 + C4r
4

= C0 + C1r + C4r
2

[(
r − C3

2C4

)2

− C2
3

4C2
4

+ C2

C4

]
, (3.37)

where

C0 = ϕ0
S

[
μ3

S + 1

2

(
m2

S + �S(T )
)

ϕ0
S + μ′

S

3
(ϕ0

S)2 + λS

4
(ϕ0

S)3
]

,

C1 = sin β
[
μ3

S + (m2
S + �S(T ))ϕ0

S + μ′
S(ϕ0

S)2 + (ϕ0
S)3λS

]
,

C2 =
[

1

2

(
−μ2

H + �H (T )
)

cos2 θ + 1

2

(
m2

S + �S(T )
)

sin2 θ

+ϕ0
S

(μHS

2
cos2 θ+μ′

S sin2 θ
)

+ 1

2
(ϕ0

S)2
(

λHS

2
cos2 θ + 3λS sin2 θ

)]
,

C3 = ET cos3 θ − 1

2
cos2 θ sin θ

(
μHS + λHSϕ0

S

)
− sin3 θ

(
μ′

3
+ λSϕ0

S

)
,

C4 = 1

4

(
λH cos4 θ + λHS cos2 θ sin2 θ + λS sin4 θ

)
. (3.38)

Here, the constant term is able to be dropped by shift in vacuum energy. It is required
that C1 = 0 and C2 = C2

3/4C4 in order to get two degenerate minima at the critical
temperature TC , and the situation is described by

V (rC, θC, TC) = C4r
2 (r − rC)2 , (3.39)

with rC = C3(TC)/2C4. Thus, we obtain

vC

TC

= rC cos θC

TC

= E cos4 θC − cos θC sin θC

[(
μHS + λHSϕ0

S

)
cos2 θC/2 + (

μ′
S/3 + λSϕ0

S

)
sin2 θC

]
/TC(

λH cos4 θC + λHS cos2 θC sin2 θC + λS sin4 θC

)
/2

.

(3.40)

It is found that the strong phase transition is related to absolute value of the square
bracket in the numerator.
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3.2 Phase Transition in the Real-Singlet Model

The effective potential we employ is given by

Veff(ϕ, ϕS, T ) = V0(ϕ, ϕS) + V1(ϕ, ϕS) + V1(ϕ, ϕS, T ) + Vdaisy(ϕ, ϕS, T ),

(3.41)

where the tree-level potential

V0(ϕ, ϕS) = − μ2
H

2
ϕ2 + λH

4
ϕ4 + μHS

2
ϕ2ϕS + λHS

4
ϕ2ϕ2

S

+ μ3
SϕS + m2

S

2
ϕ2

S + μ′
S

ϕ3
S

+ λS

4
ϕ4

S, (3.42)

the 1-loop Coleman-Weinberg potential

V1(ϕ, ϕS) =
∑

i

ni

m̄4
i (ϕ, ϕS)

64π2

(
ln

m̄2
i (ϕ, ϕS)

μ2
− ci

)
, (3.43)

and the finite-temperature 1-loop potential

V1(ϕ, ϕS, T ) =
∑

i

ni

T 4

2π2
IB,F

(
m̄2

i (ϕ, ϕS)

T 2

)
. (3.44)

Here, in addition to the SM particles, a contribution from the real singlet is included.
It should be noted that the zero-temperature 1-loop potential takes the Landau gauge
(ξ = 0), and the problem is discussed in [11] with the h̄ expansion. The last term is
the so-called daisy contributions [12]

Vdaisy(ϕ, ϕS, T ) = −
∑

nj

T

12π

[ {
M̄2

j (ϕ, ϕS, T )
} 3

2 −
{
m̄2

j (ϕ, ϕS, T )
} 3

2
]
,

(3.45)

where the thermally corrected boson masses M̄2
j (ϕ, ϕS, T ) = m̄2

j (ϕ, ϕS) + �j(T )

with the thermal masses �j(T ) [10, 12]. The daisy contributions correspond to
resummations, which deals with breakdown of the perturbation at the high temper-
ature [13]. As one example, let us briefly see a naive dimensional analysis in the φ4

theory with describing all momentums and energy scales as the temperature T .
Figure 3.2 shows one and two loops in the φ4 theory. Since the one-loop diagram

has a quadratic divergence, it can be described by λT 2 with a dimensionless
coupling λ. Upper loop in the two-loop diagram has the same structure as the one-
loop diagram, while the lower loop is described by the first derivative of the 1-loop
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Fig. 3.2 One- and two-loop
diagrams in the φ4 theory

Fig. 3.3 Three-loop
diagrams in the φ4 theory

Fig. 3.4 Daisy diagram

diagram with respect to mass square m2. The two-loop diagram finally leads to
(λT 2) λT /m. Similarly, left cactus diagram in Fig. 3.3 produces (λT 2) (λT /m)2,
and right non-cactus diagram has (λT 2)2 λT/m3. Taking ratios of these diagrams,
one find that

Non-cactus three loop

Two loop
∼ λT 2

m2 , (3.46)

Non-cactus three loop

Cactus loop
∼ T

m
. (3.47)

It is understood that adding one-vertex bubble to the 1-loop diagram needs an extra
factor of λT 2/m2, and the perturbation is breakdown if λT 2/m2 � 1. The second
relation implies that the diagram in which several one-vertex bubbles are attached
to the central loop becomes dominant at high temperature. Thus, daisy diagram in
Fig. 3.4 is non-negligible contribution, whose size is roughly given by

(Daisy diagram) ∼ λ2T 3

m

(
λT 2

m2

)n−1

. (3.48)

This situation can also be regarded as an IR divergence of the zero mode in the
boson propagator. Therefore, in order to deal with the problem, we add thermal
effects to the boson masses such as m2(ϕ) → m2(ϕ) + λT 2, which is called
resummation. Our treatment in Eq. (3.45) amounts to the resummation of only the
zero-mode propagator. Recent study about the resummation is discussed in [14].
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Using the potential in Eq. (3.41), we find vC and TC . Once the critical VEV and
temperature are obtained, the sphaleron energy is numerically evaluated by solving
the equations of motion in the real-singlet model. Here, we employ the following
ansatz for the SU(2) gauge, Higgs, and real singlet:

Ai(μ, r, θ, φ) = − i

g2
f (r)∂iU(μ, θ, φ)U−1(μ, θ, φ), (3.49)

H(μ, r, θ, φ) = v√
2

[
(1 − h(r))

(
0

e−iμ cos μ

)
+ h(r)U(μ, θ, φ)

(
0
1

)]
,

(3.50)

S(μ, r, θ, φ) = vSk(r), (3.51)

where U(μ, θ, φ) is defined in Eq. (2.19). The equations of motion are given by

d2f

dξ2
= 2

ξ2
f (1 − f )(1 − 2f ) − 1

4
h2(1 − f ), (3.52)

d

dξ

(
ξ2 dh

dξ

)
= 2h(1 − f )2 + ξ2

g2
2

1

v4

∂Veff

∂h
, (3.53)

d

dξ

(
ξ2 dk

dξ

)
= ξ2

g2
2

1

v2v2
S

∂Veff

∂k
, (3.54)

with the boundary conditions

lim
ξ→0

f (ξ) = 0, lim
ξ→0

h(ξ) = 0, lim
ξ→0

k′(ξ) = 0, (3.55)

lim
ξ→∞ f (ξ) = 1, lim

ξ→∞ h(ξ) = 1, lim
ξ→∞ k(ξ) = 1. (3.56)

The sphaleron energy is

Esph =4πv

g2

∫ ∞

0
dξ

[
4

(
df

dξ

)2

+ 8

ξ2
(f − f 2)2 + ξ2

2

(
dh

dξ

)2

+ h2(1 − f )2

+ ξ2

2

v2
S

v2

(
dk

dξ

)2

+ ξ2

g2
2v4

Veff(h, k, T )

]
. (3.57)

With the obtained sphaleron energy, we clarify regions that satisfies the baryon
number conservation criterion. Our analysis focuses on evaluating E(TC) without
the zero-mode factors, so the condition we estimate is described by

v(TC)

TC

>
g2

4πE(TC)

[
42.97 − 2 log

(
T

100 GeV

)]
≡ ζsph(TC). (3.58)
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Chapter 4
Baryon Number

Abstract New physics generally contains additional CP phases, and they appear
in the interactions between the new EW-interacting fermions and the two Higgs
doublets in our extended model. In this chapter, we discuss how the CP-violating
interactions lead to producing the baryon asymmetry based on closed time path
formalism.

Keywords Baryon asymmetry · CP-violating interactions · Closed time path
formalism

4.1 Derivation of the Diffusion Equations

Procedures for the estimation of the BAU are briefly the following:

1. Prepare diffusion equations for charges of the left- (Q) and right-handed (T ) top
quarks, and store the Higgs sectors (H) in the symmetric phase.

2. Derive the left-handed number density nL by solving the coupled diffusion
equations.

3. Transform nL to the baryon number nB .

Formally, the diffusion equation for the number density na takes the form

∂tna + ∇ · ja = �a + SCPV
a , (4.1)

where �a is chirality-changing rate and SCPV
a represents CP-violating source term.

The chirality-changing rate has an effect of reducing the final baryon number, and
we include the top Yukawa, the top mass, and the strong sphaleron interactions as the
chirality-changing processes. On another front, the final expression of nB is linearly
proportional to the CP-violating source term, which means the second condition of
the Sakharov criteria.
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t

−∞ + ∞C +

C−

Fig. 4.1 The closed time path in the direction of t, which runs from −∞ to +∞ and then back to
−∞. Fields are distinguished by their placement on the first path of C+ and the second path of C−

In the evaluation of the baryon number, we use the closed time path (CTP)
formalism [1–4], which is able to formulate Green’s functions with incorporating the
non-equilibrium phenomena. The closed time path implies that the time integration
contour is closed running from −∞ to +∞ and back to −∞ as in Fig. 4.1.
The diffusion equations obtained by the CTP formalism are called the quantum
Boltzmann equations (QBE’s), and they can automatically take the CP-violating
sources in. At present, the CTP formalism is regarded as the strongest tool for the
calculation of the BAU based on the field theory.

Let us assume that the Hamiltonian of a system is described by a combination of
H0 and Hint, in which perturbative expansion is treated. An expectation value of an
operator Oint at the time t is described by

〈O〉(t) ≡ 〈ψint(t)|Oint|ψint(t)〉 = 〈ψi |U†(t, ti)OintU(t, ti)|ψi〉, (4.2)

with an initial state |ψi〉, and

U(t2, t1) = T

[
exp

{
−i

∫ t2

t1

dt ′Hint(t
′)
}]

, (4.3)

where T is the time-ordering operator. Since it is valid that U(tf , ti)|ψi〉 = eiθ |ψi〉
under adiabatic assumption, the expectation value is written by

〈O〉(t) = 〈ψi |U(ti, tf )U(tf , t)OintU(t, ti)|ψi〉
= e−iθ 〈ψi |T

[
U(tf , ti)Oint

] |ψi〉

= 〈ψi |T
[
U(tf , ti)Oint

] |ψi〉
〈ψi |U(tf , ti)Oint|ψi〉 . (4.4)

At finite temperature, this expression is not correct since the expression of
U(tf , ti)|ψi〉 = eiθ |ψi〉 is not valid. The initial state is not the same as that of
the final state anymore in a situation such as the early Universe where we cannot
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ignore cosmic expansion.1 The situation we consider here is an area where a
bubble expands and particles flow into it. Under these circumstances, the adiabatic
evolution is no longer valid. Therefore, the above expectation value is given by

〈O〉(t) = 〈ψi |U(ti, tf )T
[
U(tf , ti)Oint

] |ψi〉. (4.5)

Taking ti = −∞ and tf = +∞, one find that the route of t corresponds to the closed
time path as in Fig. 4.1, and the expectation value is obtained without specifying
the final states. It is also seen that the CTP formalism makes it possible to express
quantum averages of operators at finite time including effects from the past collision.
This is exactly the necessary method for evaluation of the BAU.

4.1.1 Green’s Functions in the Framework of the CTP
Formalism

Since there are positive and negative branches in the closed time path, propagator
takes the 2 × 2 matrix form. For bosons, Green’s function is defined as follows:

Ĝ(x, y) ≡ 〈TP φ(x)φ†(y)〉 =
(

Gt(x, y) G<(x, y)

G>(x, y) Gt̄ (x, y)

)
=

(++ +−
−+ −−

)
, (4.6)

where + (−) denotes the branch from −∞ to +∞ (+∞ to −∞) in the closed time
path and

G>(x, y) = 〈φ−(x)φ
†
+(y)〉,

G<(x, y) = 〈φ†
−(y)φ+(x)〉,

Gt (x, y) =
〈
T

{
φ+(x)φ

†
+(y)

}〉

= θ(x0 − y0)G>(x, y) + θ(y0 − x0)G<(x, y),

Gt̄ (x, y) =
〈
T̄

{
φ−(x)φ

†
−(y)

}〉

= θ(x0 − y0)G<(x, y) + θ(y0 − x0)G>(x, y). (4.7)

In the same way, we define self-energies

�̂(x, y) =
(

�t(x, y) �<(x, y)

�>(x, y) �t̄ (x, y)

)
. (4.8)

1This statement is also mentioned in Ref. [5].
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The self-energies are related to Green’s functions through the Schwinger-Dyson
(SD) equations

Ĝ(x, y) = Ĝ0(x, y) − i

∫

C

d4z

∫

C

d4w Ĝ0(x, z)�̂(z,w)Ĝ(w, y), (4.9)

Ĝ(x, y) = Ĝ0(x, y) − i

∫

C

d4z

∫

C

d4w Ĝ(x, z)�̂(z,w)Ĝ0(w, y), (4.10)

where C denotes the closed time path and Ĝ0(x, y) is the free propagator that
follows

(�x + m2(x))Ĝ0(x, y) = −iδ(4)(x − y), (4.11)

and δ
(4)
C (x − y) is defined by

δ
(4)
C (x − y) = δ(4)(x − y)τ 3 =

⎧
⎪⎪⎨

⎪⎪⎩

δ(4)(x − y) for Gt(x, y),

−δ(4)(x − y) for Gt̄(x, y),

0 for others.

(4.12)

If (�x + m2(x)) acts on Eqs. (4.9) and (4.10), we obtain

(�x + m2(x))Ĝ(x, y) = −iδ(4)(x − y)τ 3 −
∫ ∞

−∞
d4w �̂(x,w)τ 3Ĝ(w, y),

(4.13)

(�y + m2(x))Ĝ(x, y) = −iδ(4)(x − y)τ 3 −
∫ ∞

−∞
d4w Ĝ(x,w)τ 3�̂(w, y).

(4.14)

This is because the second term on the right side comes from

− i

∫

C

d4z (�x + m2)Ĝ0(x, z)�̂(z,w)

= −i

(∫ ∞

−∞
+

∫ −∞

+∞

)
d4z (�x + m2)Ĝ0(x, z)�̂(z,w)

= −
{∫ ∞

−∞
δ(4)(x − z)

(
1 0
0 0

)
−

∫ −∞

∞
δ(4)(x − z)

(
0 0
0 1

)}
d4z�̂(z,w)

= −
∫ ∞

−∞
d4z δ(4)(x − z)1�̂(z,w)

= −�̂(x,w), (4.15)
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and then

− i

∫

C

d4z

∫

C

d4w (�x + m2)Ĝ0(x, z)�̂(z,w)Ĝ(w, y)

= −
∫

C

d4w �̂(x,w)Ĝ(w, y)

= −
(∫ ∞

−∞
+

∫ −∞

+∞

)
d4w [�̂(x,w)]ij [Ĝ(w, y)]jk

= −
∫ ∞

−∞
d4w

(
[�̂(x,w)]i+[Ĝ(w, y)]+k − [�̂(x,w)]i−[Ĝ(w, y)]−k

)

= −
∫ ∞

−∞
d4w �̂(x,w)τ 3Ĝ(w, y). (4.16)

Ĝ11(x, y) and Ĝ22(x, y) in the above equations take forms

(�x + m2(x))Ĝt (x, y) = −iδ(4)(x − y) −
∫ ∞

−∞
d4w �t(x,w)Gt (w, y)

− �<(x,w)G>(w, y), (4.17)

(�y + m2(x))Ĝt (x, y) = −iδ(4)(x − y) −
∫ ∞

−∞
d4w Gt(x,w)�t (w, y)

− G<(x,w)�>(w, y), (4.18)

(�x + m2(x))Ĝt̄ (x, y) = iδ(4)(x − y) −
∫ ∞

−∞
d4w �>(x,w)G<(w, y)

− �t̄(x,w)Gt̄ (w, y), (4.19)

(�y + m2(x))Ĝt̄ (x, y) = iδ(4)(x − y) −
∫ ∞

−∞
d4w G>(x,w)�<(w, y)

− Gt̄(x,w)�t̄ (w, y). (4.20)

Ĝ12(x, y) and Ĝ21(x, y) become

(�x + m2(x))Ĝ<(x, y) = −
∫ ∞

−∞
d4w �t(x,w)G<(w, y) − �<(x,w)Gt̄ (w, y),

(4.21)

(�y + m2(x))Ĝ<(x, y) = −
∫ ∞

−∞
d4w Gt(x,w)�<(w, y) − G<(x,w)�t̄ (w, y),

(4.22)
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(�x + m2(x))Ĝ>(x, y) = −
∫ ∞

−∞
d4w �>(x,w)Gt (w, y) − �t̄(x,w)G>(w, y),

(4.23)

(�y + m2(x))Ĝ>(x, y) = −
∫ ∞

−∞
d4w G>(x,w)�t (w, y) − Gt̄(x,w)�>(w, y).

(4.24)

Next, we write down the Noether current of the scalar field with Green’s
functions. The current of the scalar field is given by

Jμ(x) = −iQ
[
φ†(x){∂μφ(x)} − {∂μφ†(x)}φ(x)

]
, (4.25)

where Q is a conserved quantity that is associated with the transformation of φ →
φ′ = eiαQφ.2 This current can be expressed by G<(x, y)

Q (∂μ
x − ∂μ

y )G<(x, y)

∣∣∣
y→x

= Q (∂μ
x − ∂μ

y )〈φ†
−(y)φ+(x)〉

∣∣∣
y→x

= Q 〈φ†
−(y){∂μφ+(x)} − {∂μφ

†
−(y)}φ+(x)〉

∣∣∣
y→x

= i〈Jμ(x)〉. (4.26)

The derivative of the current is given by

∂xμ〈Jμ(x)〉 = −iQ∂xμ (∂μ
x − ∂μ

y )G<(x, y)

∣∣∣
y→x

= −iQ (�x − �y)G
<(x, y)

∣∣
y→x

.

In order to see the distribution of particles macroscopically, we take the center-of-
mass coordinate system X = x+y

2 and r = x − y, which leads to

∂nφ(X)

∂tX
+ ∇X · jφ(X) = iQ

∫ ∞

−∞
d4w

[
�t(X,w)G<(w, y)−�<(x,w)Gt̄ (w,X)

−Gt(X,w)�<(w,X) + G<(X,w)�t̄ (w,X)
]
.

(4.27)

�t,t̄ and Gt,t̄ are rewritten by

�t(X, z) = θ(X0 − z0)�>(X, z) + θ(z0 − X0)�<(X, z), (4.28)

�t̄(X, z) = θ(z0 − X0)�<(z,X) + θ(X0 − z0)�>(z,X), (4.29)

2Here, the conserved quantity corresponds to a particle number.
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Gt(X, z) = θ(X0 − z0)G>(X, z) + θ(z0 − X0)G<(X, z), (4.30)

Gt̄(X, z) = θ(z0 − X0)G<(z,X) + θ(X0 − z0)G>(z,X), (4.31)

so Eq. (4.27) finally becomes

∂nφ(X)

∂tX
+ ∇X · jφ(X) =iQ

∫ tX

−∞
dz0

∫ ∞

−∞
d3z

[
�>(X, z)G<(z,X)

−�<(X, z)G>(z,X) − G>(X, z)�<(z,X)

+G<(X,Z)�>(z,X)
]
. (4.32)

This is exactly the diffusion equation for nφ , and it expresses the time variation of
the number density of nφ . The time integration is performed from −∞ to T , which
implies that memory effect holding information about past history of the system
appears.

Fermion parts are similarly extracted. The Green’s function is

Ŝαβ(x, y) ≡ 〈TP ψα(x)ψ̄β(y)〉 =
(

St
αβ(x, y) S<

αβ(x, y)

S>
αβ(x, y) St̄

αβ(x, y)

)
, (4.33)

with spinor indices α and β, and

S>
αβ(x, y) = 〈ψ−α(x)ψ̄+β(y)〉,

S<
αβ(x, y) = −〈ψ̄−β(y)ψ+α(x)〉,

St
αβ(x, y) = 〈

T
{
ψ+α(x)ψ̄+β(y)

}〉

= θ(x0 − y0)S>
αβ(x, y) + θ(y0 − x0)S<

αβ(x, y),

St̄
αβ(x, y) = 〈

T̄
{
ψ−α(x)ψ̄−β(y)

}〉

= θ(x0 − y0)S<
αβ(x, y) + θ(y0 − x0)S>

αβ(x, y). (4.34)

The SD equations are given by

Ŝ(x, y) = Ŝ0(x, y) − i

∫

C

d4z

∫

C

d4w Ŝ0(x, z)�̂(z,w)Ŝ(w, y), (4.35)

Ŝ(x, y) = Ŝ0(x, y) − i

∫

C

d4z

∫

C

d4w Ŝ(x, z)�̂(z,w)Ŝ0(w, y), (4.36)
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where Ŝ0 represents the free propagator that follows3

(i /∂x − m)Ŝ0(x − y) = iδ
(4)
C (x − y). (4.37)

If (i /∂x − m) and (i /∂y + m) act on Ŝ(x, y)

(i /∂x − m)Ŝ(x, y) = iδ
(4)
C (x − y)τ 3 +

∫ ∞

−∞
d4w �̂(x,w)τ 3Ŝ(w, y), (4.38)

Ŝ(x, y)(i /∂y + m) = −iδ
(4)
C (x − y)τ 3 −

∫ ∞

−∞
d4w Ŝ(x,w)τ 3�̂(w, y), (4.39)

these relations lead to

i
[
/∂xŜ(x, y) + Ŝ(x, y)/∂y

]
=

∫ ∞

−∞
d4w

[
�̂(x,w)τ 3Ŝ(w, y) − Ŝ(x, w)τ 3�̂(w, y)

]
.

(4.40)

On another front, the Noether current, which involves the transformation of ψ

→ ψ ′ = eiαQψ , is

Jμ(x) = −Qψ̄(x)γ μψ(x), (4.41)

and its first derivative becomes

∂xμ〈Jμ(x)〉 = −Q(∂xμ + ∂yμ) 〈ψ̄(y)γ μψ(x)〉∣∣
y→x

= −Q Tr 〈ψ̄(y)
←−
/∂ yψ(x) + ψ̄(y)

−→
/∂ xψ(x)〉

∣∣∣
y→x

= −iQ Tr
[
i
(
/∂x + /∂y

)
S>(x, y)

]∣∣
y→x

. (4.42)

3Free propagator for fermion satisfies

(i /∂x − m)Ŝ0(x − y) = iδ(4)(x − y),

Ŝ0(x − y)(i /∂y + m) = −iδ(4)(x − y),

where

iδ(4)(x − y) =
∫

d4p

(2π)4 (/p − m)e−ip·(x−y)S̃0(p) =
∫

d4p

(2π)4 (i /∂x − m)e−ip·(x−y)S̃0(p),

−iδ(4)(x − y) =
∫

d4p

(2π)4 (−/p + m)e−ip·(x−y)S̃0(p) =
∫

d4p

(2π)4 e−ip·(x−y)S̃0(p)(i /∂y + m).



4.1 Derivation of the Diffusion Equations 55

Then, we finally obtain the diffusion equation for fermion

∂nψ(X)

∂tX
+ ∇X · jψ(X) = −iQ

∫ tX

−∞
dz0

∫ ∞

−∞
d3z Tr

[
�>(X, z)G<(z,X)

−�<(X, z)S>(z,X) − S>(X, z)�<(z,X)

+S<(X,Z)�>(z,X)
]
. (4.43)

It should be emphasized that the right-hand side in the diffusion equation is able
to be extracted by the perturbative calculations incorporating the CP-violating
processes.

4.1.2 CP-Violating Source Term and Chirality-Changing Rate

In our model, relevant interactions to the BAU are

L = H̃ 0
(
cH̃ 0S̃
L PLφ0

a + cH̃ 0S̃
R PRφ0

b

)
S̃ + h.c., (4.44)

in any types of Z2 assignment of new fermions. Here, a and b correspond to 1
or 2. This interaction leads to the self-energy of �

H̃
as in Fig. 4.2. Although the

interaction causes a mixing between H̃ 0 and S̃, the calculation for the diffusion
equation is performed with gauge eigenstates. This treatment is adequate under the
symmetric phase as long as the space-dependent VEVs are not so large.

The self-energy of �
H̃

is described with the free propagator for S̃

�
H̃

(X, z) = gLR(X,w)PLŜ0
S̃
(Xz)PR + gLL(X, z)PLŜ0

S̃
(X, z)PL

+ gRR(X, z)PRŜ0
S̃
(X, z)PR + gRL(X, z)PRŜ0

S̃
(X, z)PL, (4.45)

Fig. 4.2 Self-energy of H̃ 0 that is essential for the BAU in this model
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where

gLR(X, z) = −1

2
cH̃ 0S̃
L cH̃ 0S̃

L va(X)vb(z), (4.46)

gLL(X, z) = −1

2
cH̃ 0S̃
L

(
cH̃ 0S̃
R

)∗
va(X)vb(z), (4.47)

gRR(X, z) = −1

2
cH̃ 0S̃
R

(
cH̃ 0S̃
L

)
vb(X)va(z), (4.48)

gRL(X, z) = −1

2
cH̃ 0S̃
R

(
cH̃ 0S̃
R

)∗
vb(X)va(z). (4.49)

Applying the obtained �
H̃

to the diffusion equation for H̃ 0, we obtain

∂n
H̃

(X)

∂tX
+ ∇X · j

H̃
(X) = S

H̃
(X) + �

H̃
(X), (4.50)

where

S
H̃

(X) = Q

∫ tX

−∞
dz0

∫ ∞

−∞
d3z

∑

A,B=L,R

i Tr
[{

gAB(X, z) − gαβ(z,X)
}

Im(GAB)
]
,

(4.51)

�
H̃

(X) = Q

∫ tX

−∞
dz0

∫ ∞

−∞
d3z

∑

AB=L,R

Tr [{gAB(X, z) + gAB(z,X)} Re(GAB)] ,

(4.52)

with

GAB = PAS
0,>

S̃
(X, z)PBS

0,<

H̃
(z,X) − PAS

0,<

S̃
(X, z)PBS

0,>

H̃
(z,X). (4.53)

If we assume that the wall of bubbles is smooth, the derivative expansion with
respect to the VEVs is valid. Then, we consider up to the first derivative, va,b(z) �
va,b(X) + ∂

μ
Xva,b(X)(z − X)μ, which leads to

gLL(X, z) − gLL(z,X) = κS

2
cH̃ 0S̃
L

(
cH̃ 0S̃
R

)∗
v2(X)∂μβ(z − X)μ, (4.54)

gRR(X, z) − gRR(z,X) = −κS

2
cH̃ 0S̃
R

(
cH̃ 0S̃
L

)∗
v2(X)∂μβ(z − X)μ, (4.55)

gRL(X, z) − gRL(z,X) = 0, (4.56)

gLR(X, z) − gLR(z,X) = 0, (4.57)

where κS = +1 for (a, b) = (2, 1), κS = −1 for (a, b) = (1, 2) and
κS = 0 for (a, b) = (1, 1), (2, 2). As seen above, the nonzero expressions are
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necessarily proportional to (z−X)μ, and these features come from the difference of
va(X)vb(z) − va(z)vb(X). This situation implies that the CP-violating source term
vanishes if only one doublet exists. Namely, at least two different VEVs involved in
the electroweak symmetry breaking are needed for the nonzero CP-violating source
term in the framework of the CTP formalism.

The final expression for the CP-violating source term is given by4

S
H̃

(X) = κS · 2m
S̃
m

H̃
Im

[
cH̃ 0S̃
L

(
cH̃ 0S̃
R

)∗]
v2(X)∂tXβ(X) I

S̃H̃
, (4.58)

where

I
S̃H̃

= 1

4π2

∫ ∞

0

k2dk

ω
S̃
ω

H̃

[
−2

{
Im(n

S̃
) + Im(n

H̃
)
}
G(ω

S̃
, �t

S̃
, ω

H̃
, �t

H̃
)

+ {
1 − 2Re(n

S̃
)
}
I (ω

H̃
, �t

H̃
, ω

S̃
, �t

S̃
)

+ {
1 − 2Re(n

H̃
)
}
I (ω

S̃
, �t

S̃
, ω

H̃
, �t

H̃
)
]
,

(4.59)

with

I (a, b, c, d) = (b + d)

[
a + c

{
(b + d)2 + (a + b)2

}2 + a − c
{
(b + d)2 + (a − b)2

}2

]
,

(4.60)

G(a, b, c, d) = 1

2

[
(a + c)2 − (b + d)2

{
(a + c)2 + (b + d)2

}2 − (a − c)2 − (b + d)2

{
(a − c)2 + (b + d)2

}2

]
.

(4.61)

and ni = 1/
(
e(ωi−i�i )/T + 1

)
and ωi =

√
k2 + m2

i . �t
i represents thermal width,

whose order of the magnitude is roughly �t
i ∼ gT with a typical coupling g in

model. This situation results in S
H̃

∼ O(g4) with an assumption of cH̃ 0S̃
L ∼ cH̃ 0S̃

R ∼
g. The CP-violating source term becomes zero if v(X) = 0, ∂tXβ = 0, and I

S̃H̃
= 0,

where the third condition is achieved if �t

H̃
= �t

S̃
= 0.

Here, we comment on the derivative expansions of the VEVs. Since only time-
derivative terms are left after space integrations, the obtained expressions are
proportional to vw if we take the wall rest frame, z̄ = z + vwt , as in Fig. 4.3.
Therefore, it is appropriate that we consider up to the first order differentiation
of the VEVs in the derivative expansions if vw < 1. In general, the bubble
velocity is conventionally required to be slower than the speed of sound, namely,
vw � 1/

√
3 ∼ 0.58. Detailed discussions are found in [6–8].

4We take Q = −1.
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Fig. 4.3 Wall rest frame with
the velocity vw . A coordinate
in S′ is described by
z′ = z + vwt

v(z)

z1

v(z)

00

S S

vw

z, z

Similarly, the chirality-changing rates have the following structures:

gLL(X, z) + gLL(z,X) = cH̃ 0S̃
L

(
cH̃ 0S̃
R

)∗
va(X)vb(X), (4.62)

gRR(X, z) + gRR(z,X) = cH̃ 0S̃
R

(
cH̃ 0S̃
L

)∗
va(X)vb(X), (4.63)

gRL(X, z) + gRL(z,X) =
∣∣∣cH̃ 0S̃

R

∣∣∣
2
v2
a(b)(X), (4.64)

gLR(X, z) + gLR(z,X) =
∣∣∣cH̃ 0S̃

L

∣∣∣
2
v2
b(a)(X), (4.65)

and they lead to

�
H̃

(X) = 1

T

[{(∣∣∣cH̃ 0S̃
L

∣∣∣
2
v2
a(X) +

∣∣∣cH̃ 0S̃
R

∣∣∣
2
v2
b(X)

)
F+

S̃H̃ 0

+2va(X)vb(X)m
H̃ 0mS̃

× Re
[
cH̃ 0S̃
L

(
cH̃ 0S̃
R

)∗]
R+

S̃H̃ 0

} (
μ

S̃
+ μ

H̃ 0

)

+
{(∣∣∣cH̃ 0S̃

L

∣∣∣
2
v2
a(X) +

∣∣∣cH̃ 0S̃
R

∣∣∣
2
v2
b(X)

)
F−

S̃H̃ 0

+2va(X)vb(X)m
H̃ 0mS̃

× Re
[
cH̃ 0S̃
L

(
cH̃ 0S̃
R

)∗]
R−

S̃H̃ 0

} (
μ

S̃
− μ

H̃ 0

)]

≡ �+
H̃

(
μ

S̃
+ μ

H̃ 0

) + �−
H̃

(
μ

S̃
− μ

H̃ 0

)
, (4.66)

with

F±
S̃H̃ 0 = 1

4π2

∫ ∞

0
dk

k2

ω
S̃
ω

H̃ 0

[
F±

S̃H̃ 0 − k2R±
S̃H̃ 0

]
, (4.67)

R±
S̃H̃ 0 = 1

4π2

∫ ∞

0
dk

k2

ω
S̃
ω

H̃ 0
R±

S̃H̃ 0, (4.68)
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where

F±
S̃H̃ 0=

{
Re(ñ

S̃
) ∓ Re(ñ

H̃ 0)
} {

(ω
S̃
ωψ

H̃0 +�t
ψ

S̃
�t

H̃ 0)α
−+(ω

S̃
ωψ

H̃0 −�t
ψ

S̃
�t

H̃ 0)α
+

−(ω
S̃
ω

H̃ 0−�t

H̃ 0�
t

S̃
)β−+(ω

S̃
ω

H̃ 0+�t

H̃ 0�
t

S̃
)β+}

− {
Im(ñ

S̃
) ∓ Im(ñ

H̃ 0)
} {

(ω
S̃
ω

H̃ 0−�t

S̃
�t

H̃ 0)β
+ − (ω

S̃
�t

H̃ 0 + ω
H̃ 0�

t

S̃
)α+}

−
{

Im( ˜nS̃) ± Im(ñ
H̃ 0)

} {
(ω

S̃
ω

H̃ 0+�t

S̃
�t

H̃ 0)β
+ − (ω

S̃
�t

H̃ 0−ω
H̃ 0�

t

S̃
)α+}

,

R±
S̃H̃ 0 = − {

Re
(
ñ

S̃

) ∓ Re
(
ñ

H̃ 0

)} (
α+

S̃H̃ 0 − α−
S̃H̃ 0

)
+ {

Im
(
ñ

S̃
∓ Im

(
n

H̃ 0

))}
β+

S̃H̃ 0

− {
Im

(
ñ

S̃
± Im

(
n

H̃ 0

))}
β+

S̃H̃ 0, (4.69)

and

α±
S̃H̃ 0 =

�t

S̃
+ �t

H̃ 0

(ω
S̃

± ω
H̃ 0)2 + (�t

S̃
+ �t

H̃ 0)
2 , β±

S̃H̃ 0 = − ω
S̃

± ω
H̃ 0

(ω
S̃

± ω
H̃ 0)2 + (�t

S̃
+ �t

H̃ 0)
2 .

(4.70)

Note that there is no vector current for S̃ since it is a Majorana fermion, and
it follows that the corresponding chemical potential also vanishes. This situation
makes the chirality-changing rate a bit simple:

�
H̃

(X) = −
(
�−

H̃
− �+

H̃

)
μ

H̃ 0 (4.71)

These expressions are consistent with those in Ref. [9]. It is possible to fix phases of

cH̃ 0S̃
L and cH̃ 0S̃∗

R so that �
H̃

becomes minimum, and it yields more baryon numbers.
Let us define k factors

kb,f

(m

T

)
= 6nb,f

T 2μ
= 6g

T 2μ

∫
d3k

(2π)3

[
1

e(ω−μ)/T ∓ 1
− 1

e(ω+μ)/T ∓ 1

]
.

(4.72)

With the k factors, the chirality-changing rate is given by

�
H̃

(X) = −
(
�−

H̃
− �+

H̃

) 6

T 2

n
H̃ 0

k
H̃ 0

≡ −�̄
H̃

(X)
n

H̃

k
H̃ 0

, (4.73)

with

�̄
H̃

(X) = 6

T 2

(
�−

H̃
− �+

H̃

)
. (4.74)
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Fig. 4.4 The self-energy for the right-handed top quark that comes from the top mass interaction

4.1.3 Chirality-Changing Rate for the Top Mass Interaction

The diffusion equation for the top quark is given by

∂nt

∂tX
+ ∇X · jt (X) = �mt (X) + �Y (X). (4.75)

Here, while �mt (X) comes from the top mass interaction as in Fig. 4.4, �Y (X) corre-
sponds to the chirality-changing rate for the top Yukawa interaction. The derivations
for �mt (X) and �Y (X) are much complicated compared to the calculations in the
previous section. For chiral fermions, their masses coming from the VEV become
zero in the symmetric phase, and we cannot ignore thermal effects on its propagator.
As discussed in [10], there are new four poles, which correspond to collective
fermionic modes, in the propagator of the chiral fermion. For more details, see
Refs. [11–16].

Let us see the self-energy for the right-handed top quark that results from the top
mass interaction in Fig. 4.4. After a bit intricate calculations, the chirality-changing
rate is obtained by

�mtR(L)
= �+

tR(L)
(X)(μtL(R)

+ μtR(L)
) + �−

tR(L)
(X)(μtL(R)

− μtR(L)
), (4.76)

with

�±
tR(L)

=y2
t v2

2(X)

2π2T

∫ ∞

0
dk k2Im

[(
ñ

p

L(R) ∓ ñ
p

R(L)

) Z
p
LZ

p
R

Ep
L + Ep

R

+
(
ñ

p

L(R) ∓ ñh∗
R(L)

) Z
p

L(R)Z
h∗
R(L)

Ep

L(R) − Eh∗
R(L)

]
(4.77)

where Ep(k) = Ep(k) − i�p(T ) and Eh = Eh(k) − i�h(T ) are complex energies
for particle and hole excitations, respectively. �p,h(T ) is a thermal width for them.
Zp,h are residues

Z
p,h
L,R(k) =

(
Ep,h(k)

)2 − k2

2m2
t

. (4.78)
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In the limit of tL − tR symmetry, it is obtained that �+
tR

= �+
tL

= 0 and �−
tR

= �−
tL

.
This leads to the simple expressions

�mtR
= �tR (X) = �−

tR
(μtL − μtR ) = �−

tR

6

T 2

(
ntL

ktL

− ntR

ktR

)
≡ �M

(
ntL

ktL

− ntR

ktR

)
,

(4.79)

�mtL
= �tL(X)=�−

tR
(μtR − μtL)= − �−

tR

6

T 2

(
ntL

ktL

− ntR

ktR

)
≡ − �M

(
ntL

ktL

− ntR

ktR

)
,

(4.80)

with �M = 6�−
tR

/T 2.

4.2 Estimation of the Baryon Number

We include the contributions from the left- and right-handed top quarks and the
Higgs sector in the diffusion equations. Their number densities are defined as5

Q(X) = ntL, (4.81)

T (X) = ntR , (4.82)

H(X) = n�1 + n�2 + n
H̃

, (4.83)

and they obey the following diffusion equations:

∂Q

∂tX
+ ∇X · jQ(X) = �M

(
T

kT

− Q

kQ

)
+ �Y

(
T

kT

− H

kH

− Q

kQ

)

− 2�ss

(
2Q

kQ

− T

kT

− 9(Q + T )

kB

)
, (4.84)

∂T

∂tX
+ ∇X · jT (X) = −�M

(
T

kT

− Q

kQ

)
− �Y

(
T

kT

− H

kH

− Q

kQ

)

+ 2�ss

(
2Q

kQ

− T

kT

− 9(Q + T )

kB

)
, (4.85)

∂H

∂tX
+ ∇X · jH (X) = −�Y

(
Q

kQ

+ H

kH

− T

kT

)
− �̄

H̃

H

k
H̃ 0

+ S
H̃

. (4.86)

5There is no number density of the singlet in H(X) since it vanishes due to the real field.
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Fig. 4.5 Yukawa interactions taken in the diffusion equations

Here, we also include both the top Yukawa interaction �Y in Fig. 4.5 and strong
sphaleron process in the diffusion equations. The strong sphaleron results from the
triangle anomaly of the axial vector current q̄γ μγ5q, and the fact of π3(SU(NC)) =
Z for NC ≥ 2 implies a topological transitions as well as the SU(2) sphaleron.
The strong sphaleron process catalyzes the number densities of the left- and right-
handed quarks, and the process is expressed by a relation of the chemical potentials
∑3

i=1

(
μui

L
− μui

R
+ μdi

L
− μdi

R

)
. For more details, see Ref. [1].

Based on estimations in Ref. [17], we assume that �Y , �ss � �M . This situation
implies that �Y and �ss approach to the equilibrium, which results in the same chem-
ical potentials before and after interactions of the top Yukawa interaction and the

strong sphaleron, namely, μT = μH +μQ and
∑3

i=1

(
μui

L
− μui

R
+ μdi

L
− μdi

R

)
=

0. If the time scale of the interaction is faster than that of the bubble speed, it is
regarded as equilibrium. Thus, defining δY and δss as

T

kT

− H

kH

− Q

kQ

∼ O
(

1

�Y

)
≡ δY , (4.87)

2Q

kQ

− T

kT

− Q

kQ

∼ O
(

1

�ss

)
≡ δss, (4.88)

we obtain

T

kT

− Q

kQ

= H

kH

, (4.89)

2T + Q = 4kBkT + 9kQkT + kQkB

kB + 9kQ + 9kT

H

kH

. (4.90)

These relations are utilized for obtaining one combined diffusion equation

∂H

∂tX
+ a

a + b
∇X

(
2jX+jQ+jH

)+ a

a + b

�M + �̄
H̃

kH

H − a

a + b
S

H̃
+O (δY , δss) = 0,

(4.91)
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with a = kH (9kQ + 9kT + kB) and b = 9kQkT + kQkB + 4kT kB . It implies that
Eqs. (4.84), (4.85), and (4.86) are converted into the single diffusion equation for
H . When diffusion approximations known as the Fick diffusion law are introduced

jT = −DT ∇XT , jQ = −DQ∇XQ, jH = −DH ∇XH, (4.92)

where DT , DQ, and DH are the diffusion constants of each particle, more simple
expression is obtained:

∂H

∂tX
− D̄∇2

XH − S̄ + O (δY , δss) = 0, (4.93)

with

D̄ = bDQ + aDH

a + b
, (4.94)

�̄ = 1

a + b

[
a

kH

(
�M + �̄

H̃

)]
, (4.95)

S̄ = a

a + b
S

H̃
. (4.96)

Here, as in Ref. [18], we take DQ = DT for simplicity. Since the wall thickness
is much smaller than its radius, it would be valid to focus on only one direction
that the wall moves. Then, we rewrite the above equation in the wall rest frame of
z̄ = z + vwt

vwH ′(z̄) − D̄H ′′(z̄) + �̄H(z̄) − S̄(z̄) + O (δY , δss) = 0. (4.97)

While z̄ < 0 corresponds to the symmetric phase, z̄ > 0 is in the broken phase.
Assuming that �̄ is nonzero and constant for z̄ > 0, one obtain a solution for H in
the symmetric phase

H(z̄) = Aevwz̄/D̄ (4.98)

with

A = 1

D̄λ+

∫ ∞

0
dz′S̄(z′)e−λ+z′, λ+ =

vw +
√

v2
w + 4D̄�̄

2D̄
. (4.99)

In the case in which we neglect contribution from leptons, the left-handed
number density of nL becomes the sum of the left-handed quark densities. Since
the first- and second-generation quarks are only generated by the strong sphaleron,
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it is possible to relate the left-handed number densities of the first- and second-
generation quarks, Q1 and Q2, to those of the third-generation quarks Q and T .
Based on Refs. [17, 19], it is obtained that nL = Q1 + Q2 + Q = 5Q + 4T , and
the left-handed number density is finally expressed by

nL = 5Q(z̄) + 4T (z̄) = −
[
r1 + r2v

2
w

�ssD̄

(
1 − DQ

D̄

)]
H(z̄), (4.100)

where

r1 = 9kQkT − 5kQkB − 8kT kB

a
, (4.101)

r2 = kH k2
B(5kQ + 4kT )(kQ + 2kT )

a2
. (4.102)

It is seen that nL is proportional to H , which implies the proportion to the CP-
violating source term S̄ as well. With these values, the diffusion equation for the
baryon number can be obtained

DQn′′
B(z̄) − vwn′

B(z̄) − θ(−z̄)RnB(z̄) = θ(−z̄)
Ng

2
�

(s)
B nL(z̄), (4.103)

where R = (15/4)�
(s)
B that is called a relaxation term. Finally, the expression for

nB [3, 4, 9, 10, 17] can be found to be

nB(z̄ > 0) = −Ng�
(s)
B

2DQ�+

∫ 0

−∞
dz′nL(z′)e−�−z′

(4.104)

with

�± = vw ± √
v2
w + 4RDQ

2DQ

. (4.105)

What is important is that the above expression of nB includes Sakharov’s crite-
ria, i.e.,

1. Baryon number violating process: �
(s)
B ,

2. CP violation: nL,
3. Out of equilibrium: vw.

It should be emphasized that the final baryon number can not be produced if one
of them is missing. Moreover, it depends on the sphaleron rate in the broken phase
whether the baryon number is finally left in the Universe.
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Chapter 5
Electric Dipole Moments

Abstract Electric dipole moments are quantities which break time-reversal and
parity symmetry. It implies CP violation assuming that CPT theorem. The search
for the electric dipole moments is strong tools for examinations of electroweak
baryogenesis. In this chapter, we discuss the relationship between the quantities and
the CP-violating process for the BAU and see how they work in the examination.

Keywords Electric dipole moments · Barr-Zee diagrams · CP-violating source
term

5.1 Electric Dipole Moments

The electric dipole moment is a quantity defined as

d = d
s
|s| (5.1)

where s is spin, and this quantity is sometimes explained as electric bias inside a
particle. An interaction with electric field E is described by

HEDM = −d · E. (5.2)

Considering parity (P) and time-reversal (T) transformations, we can see that the
Hamiltonian changes a sign

d · E
P−→ −d · E, d · E

T−→ −d · E, (5.3)

This chapter is based on the following article: Kaori Fuyuto, Junji Hisano, and Eibun Senaha, Phys.
Lett. B 755, 491 (2016), Copyright ©2016 The Authors. Published by Elsevier B.V.

© Springer Nature Singapore Pte Ltd. 2018
K. Fuyuto, Electroweak Baryogenesis and Its Phenomenology, Springer Theses,
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S

E

S

E

S

E

- d・E - d・E

Parity Time-reversal

Fig. 5.1 Features of the EDMs under parity and time-reversal transformations. An arrow inside a
particle indicates the spin, and the other arrow corresponds to the electric field in middle figure.
Left figure shows that the parity transformation changes the arrow of the electric field changes.
Right figure describes that the direction of the spin becomes opposite under the time-reversal
transformation

because the electric field (spin) changes the sign under P (T) transformations as in
Fig. 5.1. If we assume the CPT invariance, T violation is equivalent to that of CP
symmetry. Therefore, the EDM is known as the CP-violating quantity. For reviews
on the EDMs, see [1–5].

The Lagrangian for a relativistic particle is given by

LEDM = −d
i

2
ψ̄Fμνσ

μνγ5ψ. (5.4)

From the interaction, it is seen that the EDM is originated from the CP-violating
flavor-diagonal process. The CP phase in the CKM matrix is accompanied with the
flavor-violating process; therefore it is not so simple to induce the EDM. Previous
studies [6–10] have shown that the quark EDMs induced by the KM phase appear
at three-loop level, and its order is roughly dd ∼ 10−34 e · cm for the down
quark. Moreover, that of the electron is de ∼ 10−40 e · cm [11]. These values
are undetectably small; in other words, they are the background-free quantities in
terms of looking for new physics that may induce the sizable EDMs. Equation (5.4)
also implies that the EDMs are chirality-flipping processes. Considering naive
dimensional analysis, we find that

de ∼ e
me

�2
= C × 10−23 ×

(
1TeV

�

)2

, (5.5)

dd ∼ e
md

�2 = C × 10−22 ×
(

1TeV

�

)2

, (5.6)

where C represents a loop factor ∼10−(2−4).
Table. 5.1 shows current limits and future sensitivities of the EDMs of various

species [19].1 The origins of the EDMs are different from each other; therefore the
measurements of those of the various species are important for checking new CP-

1The limit on the electron EDM is obtained by assuming that semileptonic four-fermion interac-
tions do not contribute to system. For more details, see the recent works [17, 18, 20–22].
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Table 5.1 Limits on the EDMs of various species. The future sensitivity of the mercury remains
the same

Particle species Current limit Expected limit

Neutron (n) |dn| < 3.0 × 10−26 e · cm (90% C.L.) [12] 1.0 × 10−28 e · cm [5, 13]

Proton (p) − 1.0 × 10−29 e · cm [13]

Mercury (Hg) |dHg| < 7.4 × 10−30 e · cm (95% C.L.) [14] 7.4 × 10−30 e · cm

Radium (Ra) |dRa| < 5.0 × 10−22 e · cm (95% C.L.) [15] 1.0 × 10−30 e · cm [13]

Electron (e) |de| < 8.7 × 10−29 e · cm (90% C.L.) [16, 17] 5.0 × 10−30 e · cm [13, 18]

violating source. In addition, it can occur that the EDM of one particle completely
disappears due to a cancellation of the CP phase if new physics include more than
one phase. In such a case, the other EDMs would play a more essential role in
probing scenarios.

In terms of the examination of new CP violation, the measurement of the dipole
operator of the top quark at collider experiments has also been studied [23–28],
because the top quark might be most sensitive to new physics due to the sizable
Yukawa coupling. In addition, considering that the EDMs of the light fermions
are able to be induced by that of the top quark through the electroweak running
[19, 29–32], we find that |dt | � 10−19 e cm with the new physics scale
� = 1 TeV [32].

5.2 Two-Loop Barr-Zee Diagram

In our model, the gauge interactions for the new fermions are given by

L = g2√
2

(
H̃+γ μH̃ 0W+

μ + H̃ 0γ μH̃+W−
μ

)
− eH̃+γ μH̃+Aμ, (5.7)

which can induce the light fermion EDMs via the two-loop Barr-Zee diagram [33–
38] as in Fig. 5.2. What is important is that the diagram in Fig. 4.2 partly exists in
the Barr-Zee diagram, namely, the CP-violating source term is directly connected to
the fermion EDMs. Employing a mass-insertion method for a comparison with the
CP-violating source term,2 the fermion EDMs are expressed by

dWW
f

e
= ∓ α2

em

64π2s4
W

mf m
H̃±m

S̃
vavb

m4
W

Im
[
cH̃ 0S̃
L

(
cH̃ 0S̃
R

)∗]
FWW

(
r
H̃ 0, rS̃

)

≡ CWW
EDMIm

[
cH̃ 0S̃
L

(
cH̃ 0S̃
R

)∗]
, (5.8)

2We checked the validity of using the mass-insertion method, and the difference between the mass-
insertion method and the full calculation is less than 5%.
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Fig. 5.2 The Barr-Zee
diagram with the
BAU-related CP phases

where α2
em = e2/4π and mi is a mass of particle i. The function FWW is defined as

FWW(ri, rj ) = fWW(ri, r+) − fWW(rj , r+)

m2
i − m2

H̃±
, (5.9)

with

fWW(ri, r+) =
∫ 1

0

dx

1 − x

1

X − 1
log X, X = (1 − x)ri + xr+

x(1 − x)
, (5.10)

with ri = m2
i /m2

W , rj = m2
j /m2

W and r+ = m2
H̃±/m2

W . In the expressions, the
negative (positive) sign corresponds to the case for up-type (down-type) fermion.

In order to understand a behavior of dWW
f , let us consider the electron EDM. In

Fig. 5.3, we plot the ratio |dWW
e |/dexp

e (= 8.7×10−29 e·cm) as a function of m
H̃ 0 and

m
S̃

. In the plot, the fixed mass is set to 300 GeV. It is seen that, while the pink line
behaves as memS̃

/m3
H̃ 0 in the heavy limit of m

H̃ 0 with m
S̃

= 300 GeV, the blue line

is described by me/(mS̃
m

H̃ 0) for the large mass limit of S̃ with m
H̃ 0 = 300 GeV.

5.3 Relationship Between the CP-Violating Source Term and
EDMs

Parameterizing the CP-violating source term as

S
H̃

(X) = CBAU Im
[
cH̃ 0S̃
L

(
cH̃ 0S̃
R

)∗]
, (5.11)
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Fig. 5.3 |dWW
e |/dexp

e as a function of m
H̃ 0 and m

S̃

we can replace the imaginary part with CWW
EDM

S
H̃

(X) = CBAU

CWW
EDM

(
dWW
f

e

)
. (5.12)

Since CBAU contains the rather model-dependent parameters of v2(X)∂tXβ(X), we
get rid of it and define the following parameter:

S̄ = CBAU

v2(X)∂tXβ(X)CWW
EDM

(
dWW
e

e

)

exp
, (5.13)

where we use the experimental limit of the electron EDM.
In Fig. 5.4, the function S̄ is plotted as a function of m

H̃ 0 and m
S̃

, focusing
on Type-B for Z2 assignment for new fermions. We take tan β = 1, and the fixed
mass is set to 500 GeV. Here, the orange line corresponds to S̄ against m

H̃ 0 , and the
red line is that against m

S̃
. One peak is seen around m

H̃ 0 ∼ m
S̃

, which results
from the CP-violating source term. This situation is understood as follows: if a
bubble wall carries low momentum and the injected momentum is approximated
by m2

H̃ 0 , the enhancement in the propagator of S̃ is caused at m
S̃

∼ m
H̃ 0 . One more

significant behavior of S̄ can be read in the decoupling limit of m
S̃

and m
H̃ 0 . While

S̄ grows in the large mass limit of m
H̃ 0 , it becomes flat in the heavy mass region

of m
S̃

. In Fig. 5.3, it is seen that the electron EDM drastically dumps in the large
mass limit of m

H̃
; therefore, S̄ becomes large due to the extremely small CWW

EDM
in the decoupling limit. Note that, since dWW

e is fixed in this estimation, the small
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Fig. 5.4 S̄ as a function of
m

H̃ 0 and m
S̃

. We set
tan β = 1, and the fixed mass
is 500 GeV. This is studied in
a paper [39]. (Copyright
©2016 The Authors.
Published by Elsevier B.V.)

Fig. 5.5 Dependence on the
BAU-related CP phase in the
BAU and the electron EDM.
We set
m

H̃ 0 = m
S̃

= 300 GeV, and
tan β = 1

value of CWW
EDM corresponds to large Im

[
cH̃ 0S̃
L

(
cH̃ 0S̃
R

)∗]
. Numerically, it is found

that Im
[
cH̃ 0S̃
L

(
cH̃ 0S̃
R

)∗]
> 1 for m

H̃ 0 � 1 TeV.

As seen in the previous chapter, the baryon number is roughly expressed by

nB ∼ κB

S
H̃√

�t + �
H̃

. (5.14)

The final baryon number is linearly proportional to the CP-violating source term;
however, the relationship between nB and dWW

f is a bit tricky since the chirality-
changing rates also depend on CP phase. Figure 5.5 shows dependence on the CP
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phase in the BAU and the EDM of electron. Here, it is defined that YB ≡ nB/s and
φ = −(φ

H̃
+ φ

S̃
). We also take m

H̃ 0 = m
S̃

= 300 GeV and tan β = 1. While the
red line corresponds to YB/Y obs

B with the observables in [40], the orange line is the
value of dWW

e /d
exp
e . It is clear that there are different dependences on the CP phase

between the BAU and the electron EDM. The EDMs are absolutely proportional to
sin φ as seen in their formulas; however, the BAU does not. Also, the dependence
on CP phase in the BAU varies as the masses of new fermions change.

5.4 Other Barr-Zee Diagrams

Besides the diagram in Fig. 5.2, our model can also induce another three Barr-Zee
diagrams.3 One of them is mediated by the charged scalars and W boson as in
Fig. 5.6. The relevant interactions are those between the charged scalars and new
fermions in the second terms of Eqs. (3.12) and (3.13). They are related to the first
terms in Eqs. (3.12) and (3.13) due to the SU(2) symmetry; therefore the diagram
is induced by the BAU-related CP phase. However, it is expected that the heavy
scalar contribution leads to a sub-leading effect on the fermion EDMs compared to
Fig. 5.2.

The rest of diagrams are originated from the BAU-unrelated CP phase. As seen
in Eqs. (3.12) and (3.13), the type A and B contain interactions with a real singlet
hS

LA,B
fer � −H̃+

(
gS¯̃

HH̃S
+ iγ5g

P¯̃
HH̃S

)
H̃+hS. (5.15)

Fig. 5.6 The BAU-related
Barr-Zee diagram through the
charged scalars and W boson

3Here, the Barr-Zee diagram caused by the mixing between the CP-even and CP-odd Higgs is not
present since we do not assume the CP violation in the Higgs potential.
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Fig. 5.7 Barr-Zee diagram
induced by the
BAU-unrelated phase

The CP phases in gS¯̃
HH̃S

and gP¯̃
HH̃S

differ from those of cH̃ 0S̃
L and cH̃ 0S̃

R , and the

BAU-unrelated CP phases can induce additional EDMs of d
Hγ

f and dHZ
f as in

Fig. 5.7. In total, the EDM is given by

df

e
= 1

e

(
dWW
f + dH±W±

f + d
Hγ

f + dHZ
f

)
. (5.16)

The former two terms are originated from the BAU-related CP phase, and the latter
two contributions stem from the BAU-unrelated CP phases. It would be possible
to cause the cancellation among them by tuning CP phases in gS¯̃

HH̃S
and gP¯̃

HH̃S
,

and it follows that df /e = 0. Unfortunately, this situation makes it impossible to
verify EWBG in this model by EDMs, even if the successful BAU may be produced.
However, it should be noted that the diagrams with the BAU-unrelated CP phase are
correlated to the mixing between the SU(2) Higgs and the real singlet. Therefore,
we expect that information about the Higgs physics given by upcoming collider
experiments can suggest something about the possibility of these contributions.

Although we have shown the formula of dWW
e obtained by mass-insertion

method, the full formulas, where the mass matrix of the neutral fermions is
diagonalized, are performed in our numerical calculation. After the diagonalization
of the mass matrix, the relevant interactions appear

L � − g2√
2
χ̃0

i γ μ

(
gL

χ̃0
i H̃−W+PL + gR

χ̃0
i H̃−W+PR

)
H̃−W+

μ

− g2√
2
H̃−γ μ

(
gL

H̃−χ̃0
i W−PL + gR

H̃−χ̃0
i W−PR

)
χ̃0

i W−
μ , (5.17)
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where χ̃0
i (i = 1 ∼ 3) represents the mass eigenstates defined by a complex

orthogonal matrix Nχ

1

2

(
φ̃0

1 φ̃0′
2 S̃

) (
NT

χ Nχ

)
M

(
NχNT

χ

)
⎛

⎜⎝
φ̃0

1
φ̃0′

2
S̃

⎞

⎟⎠=
(
χ̃0

1 χ̃0
2 χ̃0

3

)
⎛

⎜⎝
mχ1

mχ2

mχ3

⎞

⎟⎠

⎛

⎜⎝
χ̃0

1
χ̃0

2
χ̃0

3

⎞

⎟⎠ ,

(5.18)

and it follows that

gL

χ̃0
i H̃−W+ =

(
N†

χ

)

i1
, gR

χ̃0
i H̃−W+ =

(
N†

χ

)

2i
, (5.19)

gL

H̃−χ̃0
i W− = (

Nχ

)
1i

, gR

H̃−χ̃0
i W− =

(
N†

χ

)

i2
. (5.20)

As shown in Ref.[33–38], these interactions lead to

dWW
f

e
= ±α2

em |C|2
32π2s4

W

mf mχ̃0
i
m

H̃±

m4
W

Im

[
gL

H̃−χ̃0
i W−

(
gR

H̃−χ̃0
i W−

)∗]
fWW(rχ̃0

i
, r+),

(5.21)

where rχ̃0
i

= m2
χ̃0

i

/m2
W and the index of i runs form 1 to 3. The positive (negative)

sign is for down-type (up-type) fermions, and the coefficient of C corresponds to
the CKM matrix.

As shown in Appendix A.1, the couplings that induce d
Hγ

f are

gS¯̃
HH̃S

= |λ| cos(φλ − φ
H̃

), gP¯̃
HH̃S

= −|λ| cos(φλ − φ
H̃

). (5.22)

With these interactions, the Higgs-photon-mediated Barr-Zee diagram is given by

d
Hγ

f

e
= αem

8π3

Qf mf

m
H̃±v

|λ| sin φ
λH̃

sin γ cos γ

[
g

(
m2

H̃±

m2
H1

)
− g

(
m2

H̃±

m2
H2

)]
,

(5.23)

where φ
λH̃

= φλ − φ
H̃

, and

g(t) = t

2

∫ 1

0
dx

1

x(1 − x) − t
log

[
x(1 − x)

t

]
. (5.24)

In our numerical analysis, we drop dHZ
e since it involves accidentally suppressed

factor of (1/2 − sin2 θW ) � 0.02.



76 5 Electric Dipole Moments

Finally, the H±W∓-type diagrams are given by

dH±W±
f

e
= ± αem

(4π)3 sin θ2
W

mf√
2v

1

m2
H±

∫ 1

0
dx

1

1 − x
J

(
rWH± ,

rχ̃±H±

1 − x
+

rχ̃0
i H±

x

)

×
[
Im

{(
gS

H+fufd
+ igP

H+fufd

)
GLR+

}
mχ̃0

i
(1 − x)2

+Im
{(

gS
H+fufd

+ igP
H+fufd

)
GRL+

}
m

H̃±x2

×Im
{(

gS
H+fufd

+ igP
H+fufd

)
GLR−

}
mχ̃0

i
(1 − x)

+Im
{(

gS
H+fufd

+ igP
H+fufd

)
GRL−

}
m

H̃±x
]
. (5.25)

where fu (fd) represents up-type (down-type) fermion and

GLR− =
(
gS

χ̃H̃±H±
)∗ (

gL∗
H̃±χ̃W± − gR∗

H̃±χ̃W±
)

+i
(
gP

χ̃H̃±H±
)∗ (

gL∗
H̃±χ̃W± + gR∗

H̃±χ̃W±
)

, (5.26)

GRL− =
(
gS

χ̃H̃±H±
)∗ (

gR∗
H̃±χ̃W± − gL∗

H̃±χ̃W±
)

+i
(
gP

χ̃H̃±H±
)∗ (

gR∗
H̃±χ̃W± + gL∗

H̃±χ̃W±
)

, (5.27)

GLR+ =
(
gS

χ̃H̃±H±
)∗ (

gL∗
H̃±χ̃W± + gR∗

H̃±χ̃W±
)

+i
(
gP

χ̃H̃±H±
)∗ (

gL∗
H̃±χ̃W± − gR∗

H̃±χ̃W±
)

, (5.28)

GRL+ =
(
gS

χ̃H̃±H±
)∗ (

gR∗
H̃±χ̃W± + gL∗

H̃±χ̃W±
)

+i
(
gP

χ̃H̃±H±
)∗ (

gR∗
H̃±χ̃W± − gL∗

H̃±χ̃W±
)

, (5.29)

with

gS

χ̃H̃±H± = 1

2

(
gL

χ̃H̃±H± + gR

χ̃H̃±H±
)

= 1

2

{
−cL

H̃ 0S̃
(Nχ)3i cos β + cR

H̃ 0S̃
(Nχ)∗3i sin β

}
, (5.30)
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gP

χ̃H̃±H± = i

2

(
gL

χ̃H̃±H± − gR

χ̃H̃±H±
)

= i

2

{
−cL

H̃ 0S̃
(Nχ)3i cos β − cR

H̃ 0S̃
(Nχ)∗3i sin β

}
, (5.31)

gL∗
H̃±χ̃W± = (Nχ)∗1i , (5.32)

gR∗
H̃±χ̃W± = (Nχ)2i . (5.33)
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Chapter 6
Results

Abstract So far, we have seen how our model works for the first-order EWPT
and produces the baryon number. The Higgs physics has a possibility that the LHC
can survey the feasible region for the first-order EWPT. Also, the BAU-related CP
phase can yield the EDMs through the two-loop diagrams. In this chapter, taking
into account for experimental constraints, we present our numerical results of both
EWPT and the BAU.

Keywords Baryon number conservation condition · Higgs coupling
measurements · Electric dipole moments

6.1 Baryon Number Conservation Condition

One requirement for the successful EWBG is the baryon number conservation
condition, vC/TC > ζsph(TC). Figure 6.1 shows the feasible region that satisfies
the condition as a function of the real singlet mass mH2 . The vertical axis indicates
the Higgs couplings to the gauge bosons and fermions defined in Eq. (3.33), where it
is defined that κ = κF = κV . As κ is deviated from 1, the successful region becomes
wide. This behavior is naively understood as follows: a large mixing between H1 and
H2 causes the deviation of κ from 1, which implies a sizable value of μHS +λHSvS .
This extension yields the wide region as mH2 is heavy. If we take into account of the
value of κV in Eq. (3.34), the feasible region implies that mH2 < 170 GeV.

We also consider the deviation of the Higgs triple coupling from the SM value,
which can be measurable at the International Linear Collider [2, 3]. It is defined by

This chapter is based on the following two articles: Kaori Fuyuto and Eibun Senaha, Phys. Rev. D
90, 015015, Copyright ©2014 American Physical Society, Kaori Fuyuto, Junji Hisano and Eibun
Senaha, Phys. Lett. B 755, 491 (2016), Copyright ©2016 The Authors. Published by Elsevier B.V.
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80 6 Results

Fig. 6.1 The region where the strong first-order EWPT is satisfied in (mH2 , κ) plane. Here, it is
defined that κ = κF = κV . The dashed lines indicate the deviation of the Higgs triple coupling
from the SM value, �λH1H1H1 = 10%, 20%, 30%, 50%, and 100%, from top to bottom. The
red cross mark is a benchmark point for numerical calculations of the BAU. This is studied in a
paper, Kaori Fuyuto and Eibun Senaha, Phys. Rev. D 90, 015015 [1]. (Copyright ©2014 American
Physical Society.)

�λH1H1H1 = λrSM
H1H1H1

− λSM
H1H1H1

λSM
H1H1H1

. (6.1)

The deviation at tree level is expressed by

λ
rSM,tree
H1H1H1

= 6

[
λH vc3

γ + μHS

2
sγ c2

γ + λHS

2
sγ cγ (vsγ + vScγ ) +

(
μ′

S

3
+ λSvS

)
s3
γ

]
,

(6.2)

and it is seen that it becomes nonzero if mixing exists. In Fig. 6.1, the dashed lines
represent �λH1H1H1 = 10%, 20%, 30%, 50%, and 100%, from top to bottom.
Here, the deviation of the Higgs triple coupling is estimated at 1-loop level. As the
successful region becomes wider, the deviation of the Higgs triple coupling also
becomes larger.

The red cross mark indicates a benchmark point that we use for the estimation of
the BAU, and its detail is shown in Table 6.1.
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Table 6.1 A benchmark
point indicated by a red cross
mark in Fig. 6.1

mH2 [GeV] 170

γ −20◦

vS [GeV] 90

μHS [GeV] −80

μ′
S [GeV] −30

λH 0.13

λS 0.23

λHS 1.08

κV , κF 0.94

�λH1H1H1 [%] 31.8

vC/TC 206.75/111.76 = 1.85

E(TC) 1.80

ζsph(TC) 1.18

6.2 Baryon Number with the BAU-Related CP Phase

Before we see our numerical results for the BAU, we comment on the input
parameters. As seen in the CP-violating source term, numerical calculations need to
extract profiles of the Higgs VEVs, namely, v(z̄) and β(z̄). They can be determined
by finding static solutions for bubbles at the nucleation temperature and are often
approximated by the kink-type configurations

v(z̄) = vC

2

[
1 − tanh

{
α

(
1 − 2z̄

Lw

)}]
, (6.3)

β(z̄) = βbr(TC) − �β

2

[
1 + tanh

{
α

(
1 − 2z̄

Lw

)}]
, (6.4)

and the latter leads to

β̇ = ∂β(z̄)

∂t
= vw

∂β(z̄)

∂z̄
= α

cosh2
{
α

(
1 − 2z̄

Lw

)}
(

vw�β

Lw

)
. (6.5)

In Ref. [4], bubble profiles are estimated in the framework of the MSSM. It is found
that β̇ seems to scale as 1/m2

A, where mA is the mass of the CP-odd Higgs. Although
both v(z̄) and β̇ are really important for estimation of the BAU with better accuracy,
we take feasible values

v(X) = vC

2
, β̇ = vw�β

Lw

, (6.6)

with �β = 0.015 [4] and vw = 0.04 [5]. These assumptions allow nB to be
independent of Lw.

For thermal widths, we follow those used in [6]

�t

H̃
= 0.0025T , �t

S̃
= 0.003T . (6.7)
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Table 6.2 Input parameters
involved in the two Higgs
doublet model

tan β 1

mH1 [GeV] 125

mA = mH = mH± [GeV] 400

M2 ≡ m2
3/(sin β cos β) [GeV2] 1.25 × 105

200

200

400

400

600

600

800

800

1000

1000

mH [Gev]

m
S

 [G
ev

]

Fig. 6.2 Contour of YB/Y
jobs
B and |de| in the (m

H̃
, m

S̃
) plane. The black solid (dashed) contour is

YB/Y obs
B = 1 and 0.1. The pink region corresponds to the current restriction of the electron EDM,

and the pink dashed lines are the predictions of |de| = |dexp
e |/2 and |de| = 1.0 × 10−29 e · cm.

It is taken that |cH̃ 0S̃
L | = |cH̃ 0S̃

R | = 0.42 and φ = 225◦. This is partly studied in a paper, Kaori
Fuyuto, Junji Hisano and Eibun Senaha, Phys. Lett. B 755, 491 (2016) [11]. (Copyright ©2016
The Authors. Published by Elsevier B.V.)

The weak and strong sphaleron rates are given by [7]

�
(s)
B = 6κα5

2T , �ss = 16κ ′α4
s T , (6.8)

where αs = g2
s /(4π) with the strong coupling constant gs , κ = 20 and κ ′ = 1. It is

assumed that all heavy scalars in the 2HDM are degenerate, namely, mA = mH =
mH± , where mH and mH± are the CP-even and charged Higgs masses, respectively.
We list the input parameters involved in the 2HDM in Table 6.2.

In what follows, the type-B of Z2 assignment for the new fermions is employed in
estimations of the electron EDM. We firstly consider the case where only the BAU-
related CP phases are present, in which the WW− and HW−mediated diagrams
in Figs. 5.2 and 5.6 contribute to the EDM, namely, df = dWW

f + dH±W±
f .

Figure 6.2 shows the size of YB/Y obs
B in the (m

H̃
, m

S̃
) plane. Here, we take

|cH̃ 0S̃
L | = |cH̃ 0S̃

R | = 0.42 and φ = 225◦. The successful region that satisfies
YB/Y obs

B = 1 is on the black line, and the black dashed line corresponds to
YB/Y obs

B = 0.1. The pink region is the excluded one by the experimental limit
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on the electron EDM, |dexp
e | < 8.7 × 10−29 e · cm. The pink dashed lines represent

predictions of |de| = |dexp
e |/2 and |de| = 1.0 × 10−29 e cm from left to right. The

latter value can be reachable at the upcoming precision measurements [8–10]. While
the heavy mass region of m

S̃
receives severe constraint from the electron EDM, the

heavy m
H̃ 0 does not encounter such a situation. The difference between them can

be understood from their behaviors in the large mass limits as seen in Fig. 5.3. The
BAU is sufficiently generated in the region where two masses are degenerate, which
stems from the resonant effect in the CP-violating source term. It seems that the
sufficient production might be difficult without such an enhancement effect. The
black contour can completely be covered by the future sensitivity of the electron
EDM even if the estimation of the BAU is underestimated or overestimated by a
factor of 10 owing to the absence of bubble profiles.

6.3 Presence of the BAU-Unrelated CP Phase

When the BAU-unrelated CP phase is introduced, the relation between the BAU
and EDMs is not straightforward. In this case, the fermion EDM is described by a
combination of df = dWW

f + dH±W±
f + d

Hγ

f + dHZ
f . In order to understand how

the EDMs work for the verification of the scenario, we see the dependence of de on
the BAU-unrelated parameters. Figure 6.3 presents excluded regions by the electron
EDM in |λ| and φ

λH̃
plane, where we utilize one benchmark point in Fig. 6.2, m

H̃
=

300 GeV and m
S̃

= 277 GeV, which can achieve YB/Y obs
B = 1. In the left figure,

the pink region is excluded by the current limit, and the pink dashed line implies
an accidental cancelation between the BAU-related and BAU-unrelated CP phases.

Fig. 6.3 (Left) current excluded region by the current electron EDM limit in (|λ|, φ
λH̃

) plane at
one successful benchmark point with m

H̃ 0 = 300 GeV and m
S̃

= 277 GeV. The pink dashed line
represents that |de| = 0, and the gray lines show μγγ = 1.0 and 0.9. (Right) prospective future
excluded region by the limit of de = 1.0 × 10−29 e cm. These are partly studied in a paper, Kaori
Fuyuto, Junji Hisano, and Eibun Senaha, Phys. Lett. B 755, 491 (2016) [11]. (Copyright ©2016
The Authors. Published by Elsevier B.V.)
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Fig. 6.4 Prospects of the excluded regions by the neutron (left) and proton (right) EDMs. The
green and brown regions correspond to the future sensitivities of dn = 1.0 × 10−28 e cm and
dp = 1.0 × 10−29 e cm, respectively

The right figure reflects the future sensitivity with de = 1.0×10−29 e cm, where the
light pink region can be excluded if the measurement reaches the value. Although
the electron EDM expects to cover most of the parameter region, the cancelation
region still remains.

One promising approach to examine the region with de = 0 is the Higgs
phenomenology. The d

Hγ
e and dHZ

e contributions disappear if the mixing between
neutral scalars is zero, namely, γ = 0. Moreover, as seen in the first loop in Fig. 5.7,
the two-loop diagram is related to the Higgs decay to two gammas. Therefore, the
possibility of the contributions from d

Hγ
e and dHZ

e can be examined by both the
measurements of the Higgs coupling and the Higgs signal strength. The estimation
for the signal strength is discussed in Appendix A.2. The current experimental value
which combines Run 1 data from ATLAS and CMS is reported as μγγ = 1.14+0.19

−0.18
[12]. In Fig. 6.3, the gray lines correspond to μγγ = 1.0 and 0.9 from top to bottom.
If we take into account for the 1σ error of μγγ , only right upper region is allowed.
Future colliders such as the high-luminosity LHC [13, 14], ILC [2, 3], and TLEP
[15] aim to improve the sensitivity of μγγ up to O(5)% and the Higgs coupling to
the gauge bosons up to O(0.1)%, respectively.

Finally, we consider the future sensitivity of the neutron and proton EDMs.
They consist of the up- and down-quark EDMs and chromo EDMs, and our current
setup induces only the quark EDMs. Employing expressions in [16], we present the
prospective limits on the neutron and proton EDMs in Fig. 6.4. The green region
in the left figure is excluded by the neutron EDM with dn = 1.0 × 10−28 e cm,
while the right figure shows the future sensitivity of dp = 1.0 × 10−29 e cm in the
brown region. If their sensitivities are achieved, the cancelation region of de can be
completely covered. Thus, it is understood that the combinations of the precision
measurements play powerful role in probing the scenario.
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Chapter 7
Conclusion

In this thesis, we have studied the possibility of electroweak baryogenesis in a model
where an extra Higgs doublet, a real singlet, and new EW-interacting fermions are
introduced. The real singlet gives important contributions to the Higgs potential
for inducing the first-order electroweak phase transition, whereas the new fermions
supply relevant CP phases to producing baryon asymmetry. In this setup, the
Higgs phenomenology and precision measurements of electric dipole moments are
expected to be able to examine the possibility.

Achieving the first-order phase transition needs nonzero mixing terms between
the real singlet and the Higgs scalars. The presence of the mixing terms at tree level
affects the Higgs boson couplings, and they can be deviated from those of the SM
values. We found that one moderate benchmark point in the current model shows
that the deviation of the Higgs couplings to gauge bosons and fermions becomes 6%.
Moreover, that of the Higgs triple coupling amounts to about 30%. These deviations
can be probed in future collider experiments.

The dependence on the CP phase differs between the electric dipole moments
and baryon number. The former is simply proportional to the sine function of the
CP phase; however, the dependence in the baryon asymmetry appears not only in
the CP-violating terms but also in the CP-conserving terms. Thus, although the
maximum values of the phase leads to those of the electric dipole moments of
fermions, the baryon number cannot be produced maximally. Moreover, if another
phase is not involved in the production of the asymmetry but associated with the
low-energy observables, the phase renders the situation more complicated.

Our model owes two CP phases: one is the BAU-related, and the other is the
BAU-unrelated one. The BAU-related phase arises from interactions between the
new fermions and the space-dependent VEVs. Since our estimations of the baryon
numbers employ VEV-insertion method, only regions where the two fermions are
degenerate can produce enough amount of the asymmetry to explain the current
observed value. As long as only the BAU-related CP phase is present, the successful

© Springer Nature Singapore Pte Ltd. 2018
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region can be completely probed by the precision measurement of the electron EDM
with proposed future sensitivity, de = 1.0 × 10−29 e · cm.

The interactions between the new fermions and singlet scalar yield the BAU-
unrelated CP phase, which contributes to the fermion EDMs through different
two-loop diagrams. Once the phase comes into action, the relationship between
the BAU and the fermion EDMs breaks down. The fermion EDMs are induced
by a combination of four different Barr-Zee diagrams, and the combination can
accidentally cancel out implying de = 0. It indicates that the electron EDM is no
longer be able to verify the scenario even if the successful BAU is realized.

One helpful phenomenology in verifying the cancelation region is the Higgs
physics. The BAU-unrelated contributions to the electron EDM stem from the
mixing between the singlet and Higgs; therefore they can be investigated by the
precision measurements of the Higgs couplings as well as the phase transition.
Moreover, the BAU-unrelated two-loop diagrams affect the signal strength of the
Higgs decay to two gammas. Therefore, we expect that the Higgs physics helps to
probe the scenario even if the BAU-unrelated CP phase exists. The other powerful
approaches are precise measurements of neutron and proton EDMs, which are
composed of quark EDMs. It turns out that, if they reach dn = 1.0 × 10−28 e cm
and dp = 1.0 × 10−29 e cm, the cancelation region can be covered.

The Higgs phenomenology in collider experiments and precision measurements
of the EDMs are necessary for probing our scenario. We expect that the possibility
in the model would be completely examined in the near future.



Appendix

A.1 Four-Component Notation

Four component fields are given by

S̃ =
(

S̃0

¯̃
S0

)
, H̃ 0 =

(
φ̃0

2¯̃
φ0

1

)
, H̃+ =

(
−φ̃+

2¯̃
φ+

1

)
, H̃− =

(
φ̃−

1

− ¯̃
φ−

2

)
, (1)

S̃ =
(
S̃0 ¯̃

S0
)

, H̃ 0 =
(
φ̃0

1
¯̃
φ0

2

)
,

H̃+ = (H̃−)†γ 0 =
( ¯̃
φ+

1 −φ̃+
2

)(
0 1
1 0

)
=

(
−φ̃+

2
¯̃
φ+

1

)
,

H̃− = (H̃+)†γ 0 =
(
− ¯̃

φ−
2 φ̃−

1

)(
0 1
1 0

)
=

(
φ̃−

1 − ¯̃
φ−

2

)
. (2)

We redefine parameters and fields in the potential so that mass of each field becomes
real. For types A and B,

μ
S̃

= |μ
S̃
|eiφ

S̃ ≡ m
S̃
eiφ

S̃ , (3)

�̃2 = e−iφ
H̃ �̃′

2, (4)

S̃0 = e−iφ
S̃
/2S̃0′, (5)

λ = |λ|eiφλ, (6)

μ + λvS = |μ + λvS |eiArg(μ+λvS) ≡ m
H̃

eiφ
H̃ . (7)

In what follows, primes in �̃′ and S̃′ are dropped. With these definitions, the
Lagrangian for type A becomes
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LA
fer = H̃+(i /γ − m

H̃
)H̃+ + H̃ 0(i /γ − m

H̃
)H̃ 0 + 1

2
S̃(i /γ − m

S̃
)S̃

+
{
H̃ 0

(
cH̃ 0S̃
L PLφ0

1 + cH̃ 0S̃
R PRφ0

2

)
S̃

+H̃+
(
cH̃±S̃
L PLφ+

1 + cH̃±S̃
R PRφ+

2

)
S̃ + (h.c)

}

−H̃+
(
gS¯̃

HH̃S
+ iγ5g

P¯̃
HH̃S

)
H̃+hS − H̃ 0

(
gS¯̃

HH̃S
+ iγ5g

P¯̃
HH̃S

)
H̃ 0hS, (8)

where

cH̃±S̃
L = c11e

−iφ
S̃
/2, cH̃ 0S̃

L = −c11e
−iφ

S̃
/2, (9)

cH̃±S̃
R = −c∗

22e
i(φ

H̃
+φ

S̃
/2), cH̃ 0S̃

R = c∗
22e

i(φ
H̃

+φ
S̃
/2), (10)

gS¯̃
HH̃S

= |λ| cos(φλ − φ
H̃

), gP¯̃
HH̃S

= −|λ| sin(φλ − φ
H̃

). (11)

For type B,

LB
fer = H̃+(i /γ − m

H̃
)H̃+ + H̃ 0(i /γ − m

H̃
)H̃ 0 + 1

2
S̃(i /γ − m

S̃
)S̃

+
{
H̃ 0

(
cH̃ 0S̃
L PLφ0

2 + cH̃ 0S̃
R PRφ0

1

)
S̃

+H̃+
(
cH̃±S̃
L PLφ+

2 + cH̃±S̃
R PRφ+

1

)
S̃ + (h.c)

}

−H̃+
(
gS¯̃

HH̃S
+ iγ5g

P¯̃
HH̃S

)
H̃+hS − H̃ 0

(
gS¯̃

HH̃S
+ iγ5g

P¯̃
HH̃S

)
H̃ 0hS, (12)

where

cH̃±S̃
L = c12e

−iφ
S̃
/2, cH̃ 0S̃

L = −c12e
−iφ

S̃
/2, (13)

cH̃±S̃
R = −c∗

21e
i(φ

H̃
+φ

S̃
/2), cH̃ 0S̃

R = c∗
21e

i(φ
H̃

+φ
S̃
/2), (14)

gS¯̃
HH̃S

= |λ| cos(φλ − φ
H̃

), gP¯̃
HH̃S

= −|λ| sin(φλ − φ
H̃

). (15)

On the other hand, for types C and D, we redefine as follows:

μ = |μ|eiφμ ≡ m
H̃

eiφ
H̃ , (16)

�̃2 = e−iφ
H̃ �̃′

2, (17)

S̃0 = e−iφ
S̃
/2S̃0′, (18)

κ = |κ|eiφκ , (19)

μ
S̃

+ κvS = |μ
S̃

+ κvS |eiArg(μ
S̃
+κvS) ≡ m

S̃
eiφ

S̃ . (20)
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For type C,

LC
fer = H̃+(i /γ − m

H̃
)H̃+ + H̃ 0(i /γ − m

H̃
)H̃ 0 + 1

2
S̃(i /γ − m

S̃
)S̃

+
{
H̃ 0

(
cH̃ 0S̃
L PLφ0

1 + cH̃ 0S̃
R PRφ0

2

)
S̃

+H̃+
(
cH̃±S̃
L PLφ+

1 + cH̃±S̃
R PRφ+

2

)
S̃ + (h.c)

}

−1

2
S̃

(
gS¯̃

SS̃S
+ iγ5g

P¯̃
SS̃S

)
S̃hS, (21)

where

cH̃±S̃
L = c11e

−iφ
S̃
/2, cH̃ 0S̃

L = −c11e
−iφ

S̃
/2, (22)

cH̃±S̃
R = −c∗

22e
i(φ

H̃
+φ

S̃
/2), cH̃ 0S̃

R = c∗
22e

i(φ
H̃

+φ
S̃
/2), (23)

gS¯̃
SS̃S

= |κ| cos(φκ − φ
S̃
), gP¯̃

SS̃S
= −|κ| sin(φκ − φ

S̃
). (24)

Finally, for type D,

LD
fer = H̃+(i /γ − m

H̃
)H̃+ + H̃ 0(i /γ − m

H̃
)H̃ 0 + 1

2
S̃(i /γ − m

S̃
)S̃

+
{
H̃ 0

(
cH̃ 0S̃
L PLφ0

2 + cH̃ 0S̃
R PRφ0

1

)
S̃

+H̃+
(
cH̃±S̃
L PLφ+

2 + cH̃±S̃
R PRφ+

1

)
S̃ + (h.c)

}

−1

2
S̃

(
gS¯̃

SS̃S
+ iγ5g

P¯̃
SS̃S

)
S̃hS, (25)

where

cH̃±S̃
L = c12e

−iφ
S̃
/2, cH̃ 0S̃

L = −c12e
−iφ

S̃
/2, (26)

cH̃±S̃
R = −c∗

21e
i(φ

H̃
+φ

S̃
/2), cH̃ 0S̃

R = c∗
21e

i(φ
H̃

+φ
S̃
/2), (27)

gS¯̃
SS̃S

= |κ| cos(φκ − φ
S̃
), gP¯̃

SS̃S
= −|κ| sin(φκ − φ

S̃
). (28)

A.2 Signal Strength of the Higgs Decay to Two Photons

Utilizing the discussion in Ref. [1], we estimate the signal strength of the Higgs
decay to two gammas as follows:
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μγγ = σ(pp → H1) × BR(H1 → 2γ )

σ SM(pp → H1) × BRSM(H1 → 2γ )

� c2
γ σ SM(pp → H1) × BR(H1 → 2γ )

σSM(pp → H1) × BRSM(H1 → 2γ )

= �(H1 → 2γ )

�SM(H1 → 2γ )
× c2

γ �SM
total

�total
, (29)

where we assume �total � c2
γ �SM

total. The decay rates are obtained by

�SM(H1 → 2γ ) = α2
emm3

H1

256π3v2
|ASM|2 , (30)

�(H1 → 2γ ) = α2
emm3

H1

256π3v2

(∣∣∣AS

H̃±

∣∣∣
2 + |AP

H̃±|2
)

, (31)

where ASM = −6.49 [2] and

AS

H̃± = vgS
H1

m
H̃±

2τ
H̃±

{
1 + (1 − τ

H̃±)f (τ
H̃±)

}
, (32)

AP

H̃± = vgP
H1

m
H̃±

2τ
H̃±f (τ

H̃±), (33)

with

gS
H1

= |λ| cos φ
λH̃

sγ , gP
H1

= −|λ| sin φ
λH̃

sγ . (34)

The function of f (τ
H̃±) is given by

f (τ
H̃±) = −1

2

∫ 1

0

dy

y
log

[
m2

H1
y(y − 1 + m2

H̃±)

m2
H̃±

]
, (35)

with τ
H̃± = 4m2

H̃±/m2
H1

. Therefore, the decay rate of H1 → 2γ is expressed by

�(H1 → 2γ ) = α2
emm3

H1

256π3v2

∣∣∣cγASM + AS

H̃± + AP

H̃±

∣∣∣
2

= α2
emm3

H1

256π3v2

{
|cγASM + AS

H̃±|2 + |AP

H̃±|2
}

, (36)
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which leads to

μγγ � �(H1 → 2γ )

�SM(H1 → 2γ )
=

∣∣∣∣∣cγ +
AS

H̃±
ASM

∣∣∣∣∣

2

+
∣∣∣∣∣
AP

H̃±
ASM

∣∣∣∣∣

2

. (37)
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